如果 y 与 z 不相关,那计算就简单了:
∫√(R²-y²) * dy
设 y = R*sinα,dy = R*cosα*dα,α 的范围变换为 : [-π/2, π/2]
2∫√(R²-y²) * dy
=2∫R*cosα*(R*cosα*dα)
=∫R²*(2cos²α)dα
=∫R²*(1+cos2α)*dα
=∫R²*dα + 1/2*∫R²*cos2α*d(2α)
=[R²α + 1/2*R²*sin2α]|α=-π/2 → π/2
=πR² + 1/2*R²*[sinπ - sin(-π)]
=πR²
设 z = R*tanα,则 dz = R*sec²α*dα。α 的范围为:[-π/4, π/4]
∫dz/(R²+z²)
=∫R*sec²α*dα/[R²*(1+tan²α)]
=∫sec²α*dα/[R*sec²α]
=∫dα/R
=α/R|α=-π/4→π/4
=π/(2R)
所以,上面总的积分:
=(πR²)*[π/(2R)]
=π²R/2
追问不对吧 😰结果是(π^2 *R)/2
追答楼主不会看不懂吧!^_^
我的答案是:
π²R/2 难道不等于 (π²R)/2 吗?!