求高手解个微分方程,xd^2y/dx^2-3dy/dx=x^2, y(1)=0, y(0)=0.万分感谢!

如题所述

方程两边同时乘以x,令x=e^t,由欧拉方程可以得:D(D-1)y-3Dy=e^3t 即D^2y-4Dy=e^3t (也即d^2y/dt^2-4dy/dt=e^3t)特征方程是r^2-4r=0 则r1=0 r2=4 入=3不是方程的根,所以特解y*=ae^3t代入原方程得y=-1/3e^3t 齐次方程的通解为Y=b+ce^4t 综上所述非齐次方程的通解y=-1/3x^3+cx^4+b由初始条件知道b=0 c=1/3故y=1/3x^4-1/3x^3
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-06-22
这是欧拉方程,只要找到一个特解,第二个特解可以用第一个解个系数算出来,公式和证明你书上有吧!
下面我们找第一特解:考虑y是x的多项式:设y=ax^3+bx^2+cx解出a,b,c即可。然后第二特解套公式

求高手解个微分方程,xd^2y\/dx^2-3dy\/dx=x^2, y(1)=0, y(0)=0.万分感...
方程两边同时乘以x,令x=e^t,由欧拉方程可以得:D(D-1)y-3Dy=e^3t 即D^2y-4Dy=e^3t (也即d^2y\/dt^2-4dy\/dt=e^3t)特征方程是r^2-4r=0 则r1=0 r2=4 入=3不是方程的根,所以特解y*=ae^3t代入原方程得y=-1\/3e^3t 齐次方程的通解为Y=b+ce^4t 综上所述非齐次方程的...

微分方程2yd^2y\/dx^2=(dy\/dx)^2+y^2,初值y(x=0)=1,dy\/dx(x=
微分方程2yd^2y\/dx^2=(dy\/dx)^2+y^2,初值y(x=0)=1,dy\/dx(x= 微分方程2yd^2y\/dx^2=(dy\/dx)^2+y^2,初值y(x=0)=1,dy\/dx(x=0)=-1... 微分方程2yd^2y\/dx^2=(dy\/dx)^2+y^2,初值y(x=0)=1,dy\/dx(x=0)=-1 展开 2个回答 #热议# 你发朋友圈会使用部分人可见功能吗?丨...

...初值问题2y(d^2y\/dx^2)=(dy\/dx)^2+y^2,y|(x=0)=1,dy\/dx|(x=0)=...
令y'=p,则y''=dy'\/dx=dy'\/dy*dy\/dx=pdp\/dx 所以2pydp\/dy=p^2+y^2 p(0)≠0,所以p不恒等于0 2p\/y*dp\/dy=(p\/y)^2+1 令u=p\/y,则dp\/dy=u+y*du\/dy 2u(u+y*du\/dy)=u^2+1 y*du\/dy=1-u^2 du\/(1-u^2)=dy\/y 1\/2*(1\/(1+u)+1\/(1-u))du=dy\/y 1\/2...

微分方程dx\/y^2+dy\/x^2=0 y(1)=2的特解是
所以cosydy\/dx=1\/(x+2siny)所以dsiny\/dx=1\/(x+2siny)所以dx\/dsiny=x+2siny 令y=siny 则dx\/dy=x+2y 所以dx\/dy -x=2y 所以视x为y的函数,上面的就是一阶非齐次线性方程,很容易解的吧?

求微分方程x*(dy\/dx)-2y=x^3e^x在x=1,y=0下的特解,答案是y=x^2 (e...
【方法一】x*(dy\/dx) - 2y = x^3 * e^x 两边同时除以 x^3 => (x * y ' - 2y) \/ x^3 = e^x左边分子分母同时乘以 x => ( y ' * x^2 - y * (x^2) ' ) \/ x^4 = (y \/ x^2) ' = e^x两边同时积分 => y\/x^2 = e^x + C => y =...

令x=cost,变换方程d^2y\/dx^2-x\/(1-x^2)*dy\/dx+y\/(1-x^2)=0 答案是d^...
d^2y\/dx^2=d(dy\/dx)\/dx=d(-dy\/(sintdt))\/(-sintdt)=(-(d^2y\/dt*sint-dy\/dt*cost)\/(sint)^2)dt\/(-sintdt)=d^2y\/dt^2\/(sint)^2-dy\/dt*cost\/(sint)^3原方程可化为1\/(sint)^2*d^2y\/dt^2-cost\/(sint^3)*dy\/dt+cost\/(sint)...

微分方程问题,见下图
y^2\/y'-f(0,x) y(t)dt=1 等式两边求导:(2yy'-y''y^2)\/y'^2-y'=0 2yy'-y''y^2-y'^3=0 同除以y^2 y''+y'^3\/y^2-2y'^2\/y=0 设y=e^t y'=dy\/dt * dt\/dx=e^t * t'y''=e^t t'^2+e^t *t''t'^2e^t+t''e^t+t'^3e^(3t)\/e^(2t)-2e^(...

微分方程是求解 d2y\/dx2=2y^3+2y y(0)=0,当x=0时 dy\/dx=1
两边同乘dy,得pdp=2y^3dy+2ydy 1\/2p^2=1\/2y^4+y^2+C,带入p=1,y=0解得C=1\/2 所以p=根号下(y^4+2y^2+1)=y^2+1(由于y^2大于等于0)即dx\/dy=y^2+1,同乘dy,得dx=y^2dy+dy x=1\/3y^3+y+C 带入x=0,y=0得C=0 所以x=1\/3y^3+y 打字累死了,

求微分方程通解 d^2y\/dx^2-e^y* dy\/dx=0
令p=dy\/dx, 则d^2y\/dx^2=pdp\/dy 代入方程:pdp\/dy-e^yp=0 dp\/dy=e^y dp=e^ydy 积分:p=e^y+c dy\/dx=e^y+c dy\/(e^y+c)=dx d(e^y)\/[e^y(e^y+c)]=dx d(e^y)[1\/e^y-1\/(e^y+c)]=cdx 积分:lne^y\/(e^y+c)=cx+c1 e^y\/(e^y+c)=c1e^(cx)解得...

...dy\/dx=y\/x+e^(y\/x) x^2*dy\/dx+2xy=5y^3 y'''-2y'''+5y''=0_百度...
1,dy\/dx=y\/x+e^(y\/x) 为齐次微分方程,令 u=y\/x,则 y=xu,原方程化为 u+xdu\/dx=u+e^u,e(-u)du=dx\/x,解得 -e^(-u)=lnx-C,即通解为 e^(-y\/x)+lnx=C.2.x^2*dy\/dx+2xy=5y^3 即 d(yx^2)\/dx=5y^3,令 u=yx^2,则 y=u\/x^2,原方...

相似回答