由方程arctan y/x=ln(根号x^2+y^2)所确定的y是x的函数,求dy/dx 最好能有具体步骤.
令a=1就行,详情如图所示
设arctany比x等于ln根号下x方➕y方,求dy令a=1就行,详情如图所示
ln[根号(x^2+y^2)] =arctany\/x 求dy解:1\/2*ln(x^2+y^2)=arctany\/x两边对x求导,得 1\/2*1\/(x^2+y^2)*(2x+2y*y')=1\/[1+(y\/x)^2]*(y'*x-y)\/x^2 化简得 y'=(x+y)\/(x-y)则dy=(x+y)\/(x-y)*dx