∫x²arctanxdx

如题所述

第1个回答  2020-02-21
分部积分思想:∫x^2arctanxdx=(1/3)∫arctanxdx^3=(1/3)x^3arctanx-(1/3)∫x^3darctanx=(1/3)x^3arctanx-(1/3)∫[(x^3+x)-x]/(1+x^2)dx=(1/3)x^3arctanx-(1/3)∫xdx+(1/3)∫(x)/(1+x^2)dx=(1/3)x^3arctanx-(1/6)x^2+(1/6)ln(1+x^2)+C(C为常数)扩展资料:分部积分的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。设函数u=u(x)及v=v(x)具有连续导数,那么,两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v。对这个等式两边求不定积分,得:∫uv'dx=uv-∫u'vdx (1)公式(1)称为分部积分公式。如果求∫uv'dx有困难,而求∫u'vdx比较容易时,分部积分公式就可以发挥作用了。本回答被提问者采纳
相似回答