已知数列{an}满足a1=1,前n项和Sn=2an-n,(n∈N*)(1)证明:数列{an+1}是等比数列;(2)试比较Sn与2-n的大小关系.
已知数列{an}满足:a1=1,anan+1=2n(n∈N*).(1)证明:对任意正整数n,an+2...
k∈N*,a2k-1=a1×2k-1=2k-1,a2k=a2×2k-1=2k.…(6分)所以数列{an}的通项公式为an=2k?1,n=2k?12k,n=2k,k∈N*.…(7分)或an=(2)n?1,n为正偶数(2)n, n为正奇数 (2)?k∈N*,a2k-1+a2k=3×2k-1,…(8分)则?n∈N*,S2n=nk=1(a2k?1+ ...
已知数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1.(1)求数列{an}的...
(1)由题意可得,当n≥2时,2Sn-1=an,2sn=an+1两式相减可得,2an=an+1-an即an+1=3ana2=2a1=2∴{an}是从第二项开始到等比数列,公比q=3n≥2时,an=a2?3n-2=2?3n-2∴an=1,n=12?3n-2,n≥2(2)令bn=n(n+1)an则n≥2时,bn=n(n+1)2?3n-2bn+1-bn=(n+1)...
已知数列{an}满足a1=1,a(n+1)=2an+1(1)求证:数列{an+1}是等比数列。(2...
(1)因为(a(n+1)+1)\/an+1=2所以{an+1}是以q=2,首项为2的等比数列。(2)由(1)可得等比数列的前n项和为2(2^n-1),再减去n个1,得2(2^n-1)-n即为{an}的前n项和。(2^n表示2的n次幂)
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*)(Ⅰ)求a1,a2,a3的...
(I)∵Sn=2an-n,当n=1时,由S1=2a1-1,可得a1=1当n=2时,由S2=a1+a2=2a2-2,可得a2=3当n=3时,由S3=a1+a2+a3=2a3-3,可得a3=7证明:(II)∵Sn=2an-n∴Sn-1=2an-1-(n-1)两式相减可得,an=2an-1+1,a1+1=2∴an+1=2(an?1+1)所以{an+1}是以2为首项...
...且Sn=2an-n(n∈N*)①证明:数列{an+1}是等比数列,并求
取n=1,可知,S1=a1=2a1-1,知a1=1,即an+1=2*2^(n-1)=2^n,可知an=2^n-1 (2)由(1)知,a[n+1]-an=2^n,而 an+1=2^n,即有an+1=a[n+1]-an 故bn=(a[n+1]-an)\/(an×a[n-1])=1\/an - 1\/a[n+1]所以{bn}的前n项和,b1+b2+...+bn=1\/a1-1\/a2+1...
...1=1,n∈N*,且n≥2.(1)求证:数列{an}是等比数列;(2
1=1Sn+1?2Sn=1两式相减得an+1-2an=0,又当n=2时,a2=2,所以an+1an=2(n∈N*),所以{an}是以1为首项,2为公比的等比数列.(2)由(1)得an=2n?1,∴cn=n×(12)n?1,∴Tn=1×(12)0+2×(12)1+3×(12)2+…+(n?1)×(12)n?2+n×(12)n?1∴12Tn=1×(12...
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn(n∈N*).(I)证明数列{ann...
(Ⅰ)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),两式相减得nan+1-(n-1)an=2an,∴nan+1=(n+1)an,即an+1n+1=ann(n≥2),由a1=1,可得a2=2,从而对任意 n∈N*,an+1n+1=ann,又a11=1≠0,即{ann}是首项公比均为1的数列,所以ann=1×1n-1=1,故数列{an}的...
已知数列{an}满足a1=1,an+1=2an+n-1(Ⅰ)求证:数列{an+n...
解答:解:(Ⅰ)由数列{an}满足a1=1,an+1=2an+n-1,变形为an+1+(n+1)=2(an+n).∴数列{an+n}是等比数列,其中首项为a1+1=2,公比为2;(II)由(I)可得:an+n=2×2n-1,∴an=2n-n.∴Sn= 2(2n-1)2-1 - n(n+1)2 =2n+1-2- n(n+1)2 .
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).(Ⅰ)求证:{an2n}...
n≥2且n∈N*).∴an2n=an-12n-1+1,∴an2n-an-12n-1=1,∴{an2n}是等差数列.(Ⅱ)解:∵数列{an}满足a1=1,∴a121=12,由(Ⅰ)知:{an2n}是等差数列.∴an2n=12+(n-1)=n-12.∴an=(2n-1)2n-1.(Ⅲ)解:由an=(2n-1)2n-1得:Sn=1?
...且Sn=2an-n(n∈N*)1.求证数列{an+1}是等比数列
an+1=2a +2 s =2a -n-1 s -sn=a =2a -2an-1 a +1=2an+2 (an+1)\/(a +1)=(2a +2)\/(2an+2)=(a +1)\/(an+1)所以数列{an+1}是等比数列 设Bn=b1+b2+b3+...+bn=log2(a1+1)+log2(a2+1)+log2(a3+1)+...+log2(an+1)=log2[(a1+1)(a2+1)(a3+1).....