1/(sinx+cosx)的不定积分怎么求??

如题所述

具体回答如下:

∫1/(sinx+cosx) dx

=∫1/[√2(sinxcosπ/4+sinπ/4·cosx)]dx

=∫1/[√2sin(x+π/4)] dx

=√2/2 ∫csc(x+π/4) d(x+π/4)

=√2/2 ln|csc(x+π/4)-cot(x+π/4)|+C

不定积分的意义:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

温馨提示:内容为网友见解,仅供参考
第1个回答  2021-08-21

∫1/(sinx+cosx) dx

=∫1/[√2·(sinxcosπ/4+sinπ/4·cosx)]dx

=∫1/[√2·sin(x+π/4)] dx

=√2/2 ∫csc(x+π/4) d(x+π/4)

=√2/2 ln|csc(x+π/4)-cot(x+π/4)|+C

不定积分的公式:

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

本回答被网友采纳
第2个回答  2021-05-15

简单计算一下即可,答案如图所示

第3个回答  推荐于2018-03-18
令u = tan(x / 2),dx = 2du / (1+u²)
sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²)
∫ dx / (sinx + cosx)
= ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du
= 2∫ du / (-u² + 2u + 1)
= 2∫ du / [2 - (u - 1)²]
= 2∫ dy / (2 - y²),y=u - 1
= (1 / 2√2)ln|(y + √2) / (y - √2)| + C
= (1 / 2√2)ln|(u - 1 + √2) / (y - 1 - √2)| + C
= (1 / 2√2)ln|[tan(x / 2) - 1 + √2] / [tan(x / 2) - 1 - √2)| + C
= √2arctanh【[tan(x / 2) - 1] / √2】+ C本回答被提问者和网友采纳
第4个回答  2012-11-13
运用插入辅助角公式 sinx+cosx=(√2)sin(x+π/4)
∫ dx / (sinx + cosx)
=∫ d(x+π/4)/(√2)sin(x+π/4)
=√2/2 ln |tan(x/2+π/8)| +C

1\/(sinx+cosx)的不定积分怎么求??
∫1\/(sinx+cosx) dx =∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 不定积分的意义:一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定...

1\/(sinx+ cosx)的不定积分
1\/(sinx+cosx)的不定积分具体回答如下:∫1\/(sinx+cosx) dx =∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 不定积分的公式:1、∫adx=ax+C,a和C都是常数 2、...

【高分悬赏】求1\/(sinx+cosx)的不定积分.
公式法 ∫1\/(sinx+cosx)dx =(1\/√2)∫1\/sin(x+pi\/4)dx =(1\/√2)∫csc(x+pi\/4)dx =(1\/√2)ln|csc(x+pi\/4)-cot(x+pi\/4)|+c

1\/(sinx+cosx)的不定积分是多少?
具体回答如下:∫1\/(sinx+cosx) dx。=∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx。=∫1\/[√2sin(x+π\/4)] dx。=√2\/2 ∫csc(x+π\/4) d(x+π\/4)。=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C。不定积分的意义:设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x...

1\/(sinx+cosx)的不定积分怎么求
=(1\/2)∫[(sinx+cosx)-1\/(sinx+cosx)]dx =(1\/2)∫(sinx+cosx)dx-(1\/2)∫1\/(sinx+cosx)dx 由于(sinx+cosx)可化为根号2*sin(x+π\/4)………解释:π为圆周率,即3.14159……所以:=(1\/2)*(sinx-cosx)-(1\/2根号2)ln[((根号2)-cosx+sinx)\/(sinx+cosx)]+c 由于方法的不...

1\/(sinx+cos)的不定积分
利用sinx+cosx=√2 sin(x+π\/4)1\/sinu =cscu

1\/(sinx+cosx)的不定积分怎么求?
sinx = 2u \/ (1+u²),cosx = (1 - u²) \/ (1 + u²)∫ dx \/ (sinx + cosx)= ∫ 2 \/ 【(1 + u²) * [2u \/ (1+u²) + (1 - u²) \/ (1 + u²)]】 du = 2∫ du \/ (-u² + 2u + 1)= 2∫ du \/ [2 - (...

sinx+cosx分之一的不定积分
sinx+cosx分之一的不定积分是∫dx\/(sinxcosx)=ln|csc2x-cot2x|+C。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地...

sinx+cosx分之一的不定积分是什么?
具体回答如下:令u=tanx\/2 则sinx=2u\/(1+u²)cosx=(1-u²)\/(1+u²)dx=2du\/(1+u²)∫1\/(sinx+cosx)=∫2\/(1+2u-u²)du =√2\/2∫[1\/(u-(1-√2))-1\/(u-(1+√2))]du =√2\/2ln|(u-(1-√2))\/(u-(1+√2))|+C...

希望大神指点!求不定积分1\/(sinx+cosx)
sinx = 2u \/ (1+u²),cosx = (1 - u²) \/ (1 + u²)∫ dx \/ (sinx + cosx)= ∫ 2 \/ { (1 + u²) * [2u \/ (1+u²) + (1 - u²) \/ (1 + u²)] } du = 2∫ du \/ (-u² + 2u + 1)= 2∫ du \/ [2 -...

相似回答