参考资料:http://www.bioon.com/popular/Class405/math/200508/154808.html
什么是数学发展史上的三次危机
数学发展史上的三次危机无理数的发现:1、第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。2、第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大...
数学的危机有哪三次?
危机一,希巴斯(Hippasus,米太旁登地方人,公元前470年左右)发现了一个腰为1的等腰直角三角形的斜边(即2的2次方根)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希巴斯抛入大海。...
数学史上的三次危机及如何化解
2、公理化集合系统,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着...
三次数学危机分别是什么
数学历史上的三次危机,分别是达哥拉斯悖论、贝克莱悖论和罗素悖论。1. 第一次数学危机:毕达哥拉斯悖论 毕达哥拉斯学派在数学上的重要贡献之一是证明了毕达哥拉斯定理,即勾股定理。该定理表述为直角三角形的三边满足 a² = b² + c²,其中a和b是直角边,c是斜边。然而,毕达哥...
数学危机有几次
数学史上的三次数学危机分别发生在公元前5世纪、17世纪、19世纪末,都是发生在西方文化大发展时期。因此,数学危机的发生,都有其一定的文化背景。这三次数学危机分别是:第一次:古希腊时代,由于不可公度的线段——无理数的发现与一些直觉的经验想抵触而引发的。第二次:是在牛顿和莱布尼茨建立了微...
简述数学史上的三次数学危机及其对数学发展的影响
1. 数学悖论与三次数学危机 数学发展史上,曾发生过三次数学危机,每一次危机都由一个或几个典型的数学悖论引起。这些悖论的出现,不仅给数学带来了麻烦和失望,更重要的是,它们推动了数学的繁荣和发展。2. 毕达哥拉斯悖论与第一次数学危机 公元前六世纪,毕达哥拉斯学派提出了“万物皆数”的哲学...
三次数学危机分别是什么
1、第一次数学危机:毕达哥拉斯悖论毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理,也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a^2=b^2+c^2,a和b分别代表直角三角形的两条直角边,c表示斜边。然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了...
数学的三大危机
第三次危机发生在数学的公理和体系上出现了不合逻辑之处,导致了整个数学体系可能遭受威胁和争议的局面。如罗素悖论和希布赛可尔反例等的出现都是这场危机的直接表现。此次危机推动了对数学基础的深入反思与逻辑清理,引发了一场数学的公理化和严格逻辑验证的热潮。数学家们通过一系列努力,如建立集合论的新...
数学史的三次危机
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本...
数学史上三次数学危机的时间和原因
第一次危机发生在公元前580~568年之间的古希腊,数zhi学家毕达哥拉斯建立了毕达哥拉斯学派。第二次数学shu危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,...