解: |A-λE|=
|2-λ 2 -2|
|2 5-λ -4|
|-2 -4 5-λ|
r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)
|2-λ 2 -2|
|2 5-λ -4|
|0 1-λ 1-λ|
c2-c3
|2-λ 4 -2|
|2 9-λ -4|
|0 0 1-λ|
= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)
= (1-λ)(λ^2-11λ+10)
= (10-λ)(1-λ)^2.
扩展资料:
如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。
主要性质:
1.实对称矩阵A的不同特征值对应的特征向量是正交的。
2.实对称矩阵A的特征值都是实数,特征向量都是实向量。
3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
参考资料:百度百科——实对称矩阵
实对称矩阵a的特征值怎么求?
解: |A-λE|= |2-λ 2 -2| |2 5-λ -4| |-2 -4 5-λ| r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2| |2 5-λ -4| |0 1-λ 1-λ| c2-c3 |2-λ 4 -2| |2 9-λ -4| |0 0 1-λ| = (1-λ)[(2-λ)(9-λ)-8] (按第3行展...
实对称矩阵特征值怎么求
求值方法如下:1、特征多项式法:实对称矩阵的特征多项式即为A-λI的行列式,λ为未知数,I为单位矩阵。将特征多项式化简后得到一个关于λ的多项式,其根即为矩阵A的特征值。2、Jacobi迭代法:通过对角化矩阵,将原矩阵转化为对角形(所有非主对角线元素均变成零)求得特征值和相应的正交归一化的特征...
如何求解实对称矩阵A的特征值和特征向量?
实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
实对称矩阵怎么求它的特征值?
1、首先,确保给定矩阵是实对称矩阵。实对称矩阵满足矩阵的转置等于矩阵本身。2、使用特征值分解的方法,将实对称矩阵表示为特征向量和特征值的乘积形式。特征向量构成的正交矩阵Q,和对角矩阵Λ,A = QΛQ^T,其中,Q是特征向量组成的矩阵,Λ是特征值对角矩阵。3、求解特征值可以转化为求解矩阵A的特...
实对称矩阵的特征值怎么求?
实对称矩阵可以写A=Q^T B Q 其中Q就是特征值对应的特征向量化简的单位正交阵 A*A = Q^T B Q * Q^T B Q =Q^T B B Q 而B*B = [2 0 0 ] [2 0 0 ][0 2 0] *[0 2 0][0 0 -2] [0 0 -2]=4E (E是单位阵)所以 A*A = Q^T B Q * Q^T B Q =Q^T B...
实对称矩阵求特征值问题 特征值如何求
解: 由已知中的等式知 -1, 1 是A的特征值, 且 (1,0,-1)^T, (1,0,1)^T分别是A的属于特征值-1,1的特征向量.因为 r(A) = 2, 所以|A| = 0. 所以 0 是A的特征值. 设a = (x,y,z)^T 是A的属于0的特征向量, 则由A是3阶实对称矩阵, 所以A的属于不同特征值的特征向量...
设实对称矩阵A的特征值
你好!解题思路是,对称阵的不同特征值的特征向量是正交的,可由此求出-3的一个特征向量p3,令P=(p1,p2,p3),则(P^-1)AP=diag(1,3,-3),所以A=Pdiag(1,3,-3)P^-1。经济数学团队帮你解答,请及时采纳。谢谢!
实对称矩阵的特征值
1、实对称矩阵A的不同特征值对应的特征向量是正交的。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵...
实对称矩阵 特征值
实对称阵属于不同特征值的的特征向量是正交的。设Ap=mp,Aq=nq,其中A是实对称矩阵,shum,n为其不同的特征值。设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程...
实对称矩阵求特征值技巧
实对称矩阵求特征值 那么就是解行列式方程|A-λE|=0 解出的λ值就是特征值 而且实对称矩阵 一定可以解出实特征值的 觉得不好解,行列式展开都行