一、基本运算方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
初中数学知识点总结 初中数学基础知识大全
知识点1:一元二次方程的基本概念 1、一元二次方程3x2+5x-2=0的常数项是-2。2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。知识点2:直角坐标系与点的...
初中数学基础知识大全初中数学基础知识介绍
1、知识点:一元二次方程的基本概念 一元二次方程3x2+5x-2=0的常数项是-2。一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.2、知识点:直角坐标系与点的位置 直角坐...
初中数学全部知识点归纳总结(收藏)
初中数学是学习数学的重要阶段,涵盖的知识点繁多且重要。以下是对初中数学全部知识点的归纳总结,旨在帮助大家更好地理解和掌握。1. 数与代数:- 实数概念与运算:理解有理数、无理数、实数的概念,掌握加、减、乘、除运算的规则。- 分数与小数:熟练进行分数和小数的四则运算,包括约分、通分、互化。
初二数学知识点总结归纳
在初中的数学学习中,整理知识点是非常重要的。下面是对初二数学知识点的总结和归纳,供大家参考。1. 勾股定理 - 定义:直角三角形两直角边a,b的平方和等于斜边c的平方,即a² + b² = c²。- 逆定理:如果三角形的三边长a,b,c满足a² + b² = c²,...
求初中数学所有重要知识点,要分层次并且写得简略一点。
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数\/0\/负整数②分数→正分数\/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个...
初中数学知识点有哪些
01、初中数学知识点:一元二次方程的基本概念。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a0)。直角坐标系与点的位置,特殊三角函数值,圆的基本性质,直线与圆的位置关系等等。一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。
初中数学知识点之基础知识点总结
一、数与代数a、数与式:1、有理数:①整数→正整数\/0\/负整数②分数→正分数\/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有...
初中数学几何知识点总结
以下是初中数学几何的知识点总结:1. 两点确定一条直线。2. 直线是最短的路径。3. 同角或等角的补角相等。4. 过一点有且只有一条直线与已知直线垂直(原文中遗漏了“在同一平面内”的条件)。5. 直线外一点与直线上各点连接的所有线段中,垂线段最短。6. 平行公理:经过直线外一点,有且只有一...
中考数学必考知识点归纳
初中数学知识点归纳 1、同一平面内过两点的直线有且只有一条。2、两点之间线段最短。3、过一点有且只有一条直线和已知直线垂直。4、直线外一点与直线上各点的连接的线段中垂线段最短。5、经过直线外一点,有且只有一条直线与这条直线平行。6、如果两条直线与第三条直线平行,那么这两条直线平行。7...
初中数学重点知识点有哪些?
一、 基本概念 1.方程、方程的解(根)、方程组的解、解方程(组)2. 分类:二、 解方程的依据—等式性质 1.a=b←→a+c=b+c 2.a=b←→ac=bc (c≠0)三、 解法 1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。2. 元一次方程组的解法:⑴基本思想:...