计算1\/1+2+1\/1+2+3+...1\/1+2+3...100
1\/1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…1\/(1+2+3+4+5+…n)=2{1\/(1×2)+1\/(2×3)+…+1\/[n(n+1)]} =2[1-1\/2+1\/2-1\/3+…+1\/n-1\/(n+1)]=2[1-1\/(n+1)]=2n\/(n+1)将100代入得到 式子=200\/101 ...
怎样计算1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+1999)
=1+2(1\/2-1\/3+1\/3-1\/4+1\/4……+1\/1998-1\/1999+1\/1999-1\/2000)=1+2(1\/2-1\/2000)=1+1-1\/1000 =1999\/1000
1+2分之一 + 1+2+3分之一 +.1+2+3+4.+1999的计算结果是多少?
1+1\/(1+2)+1\/(1+2++3)+……+1\/(1+2+3+……+1999)=2*【1\/2+1\/2*(1+2)+1\/2*(1+2++3)+……+1\/2*(1+2+3+……+1999)】=2*【1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/1999-1\/2000】=2*【1-1\/2000】=2-1\/1000 =1.999 ...
计算1 + 1\/1+2 + 1\/1+2+3 + 1\/1+2+3+4 + ... + 1\/1+2+3+...+20
由公式1+2+3+...+n=n(n+1)\/2可知,以上数列的一般项为2\/[n(n+1)]=2*[1\/n-1\/(n+1)],所以 原式=2*(1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/20-1\/21)=2*(1-1\/21)=40\/21.
1+1\/1+2+2\/1+2+3+3\/1+2+3+4...99\/1+2+3+...100怎么计算
解 1+1\/1+2+2\/1+2+3+3\/1+2+3+4...99\/1+2+3+...100 =2\/1*2+2\/2*3+2\/3*4+...+2\/100*101 =2x(1\/1*2+1\/2*3+1\/3*4+...+1\/100*101)=2x(1-1\/2+1\/2-1\/3+...+1\/100-1\/101)=2x(1-1\/101)=200\/101 ...
计算1\/1+2 +1\/1+2+3 1\/1+2+3+4 +···+1\/1+2+3+···+99
=2*(1\/4-1\/5) 1\/(1+2+3+...+99)=2*(1\/99-1\/100) 连加得1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+99)=2*(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/k-1\/(1+k)+……+1\/99-1\/100)=2*(1\/2-1\/100)=49\/50 ...
数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
因为1=1*2\/2 1+2=2*3\/2 ...1+2+3+4+...2003=2003*2004\/2 所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002 ...
c语言编写。计算1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...
首先,用户需要输入一个整数n,作为序列的终止条件。接着,外层循环控制序列的项数,从n开始递减到1。内层循环则负责计算每一项的值,即1除以从1到(n-i+1)的和,然后将结果累加到总和sum中。以下是改写后的文章内容:在C语言中,计算1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+n...
1+ 1\/1+2+ 1\/1+2+3+ 1\/1+2+3+4+... 1\/1+2+3+4+5...+20
=2(1-1\/21)=40\/21 先打开几个看看规律。原式 =1\/1+1\/3+1\/6+1\/10+...+1\/(1+2+3+...+20)没规律,提取2每一项变成原来的1\/2 =2(1\/2+1\/6+1\/12+1\/20+...+1\/2(1+2+3+...+20))找规律,2=1*2,6=2*3,12=3*4,...,1+2+...+20=20*21 再计算一下下面...
1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...+2002)怎么用小学六年级学生的思...
=2-2002\/(1+2+3+...+2002)=2-2002\/2005003 =2-2\/2003 =1又2001\/2003 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2002)=1+(1-2\/3)+(2\/3-3\/6)+(3\/6-4\/10)+...-2002\/(1+2+3+...+2002)最后一个分数前面为减号,得注意 要注意发现规律 1\/...