数学史上的三次数学危机发生在公元前5世纪、公元前17世纪和公元前19世纪末,都发生在西方文化大发展时期。因此,数学危机的发生有其自身的文化背景。第一次数学危机是数学史上的一个重要事件,发生在公元前400年左右的古希腊时期,从发现根式二到公元前370年左右,其标志是无理数定义的出现。第二次数学危机发生在17和18世纪,是在微积分诞生的早期对其基本定义的争论。
这场危机最终改进了微积分的定义和与实数相关的理论体系。同时,它基本上解决了第一次数学危机中无限计算的连续性问题,推动了微积分在数学相关学科各个方面的应用。第三次数学危机的根源,第一次和第二次数学危机后,人们把数学基础理论的非矛盾性归结为集合论的非矛盾性。集合论已经成为整个现代数学的逻辑基础,数学的宏伟建筑已经完成。集合论似乎没有矛盾。
数学严谨的目标即将实现。 庞加莱(1854 - 1912),一位著名的法国数学家,在1900年于巴黎举行的国际数学家大会上夸口说:“可以说已经达到了绝对的严格性。”。然而,不到两年后,英国著名逻辑学家和哲学家罗素(1872-1970)宣布了一个惊人的消息:集合论是矛盾的,没有绝对的严格性!这被称为“罗素悖论”。
1918年,罗素将这个悖论推广为“理发师悖论”。罗素悖论的发现就像晴天霹雳,把人们从梦中唤醒。罗素悖论和集合论中的其他一些悖论深入到集合论的理论基础中,从而危及整个数学系统的确定性和严密性。因此,它在数学和逻辑领域引起了巨大的轰动,形成了数学史上的第三次危机。
什么是数学发展史上的三次危机
1、第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。2、第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀...
数学史上的三次危机及如何化解
2、公理化集合系统,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着...
三次数学危机分别是什么
数学历史上的三次危机,分别是达哥拉斯悖论、贝克莱悖论和罗素悖论。1. 第一次数学危机:毕达哥拉斯悖论 毕达哥拉斯学派在数学上的重要贡献之一是证明了毕达哥拉斯定理,即勾股定理。该定理表述为直角三角形的三边满足 a² = b² + c²,其中a和b是直角边,c是斜边。然而,毕达哥...
数学史的三次危机
1、无理数大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但...
数学的危机有哪三次?
危机一,希巴斯(Hippasus,米太旁登地方人,公元前470年左右)发现了一个腰为1的等腰直角三角形的斜边(即2的2次方根)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希巴斯抛入大海。
简述数学史上的三次数学危机及其对数学发展的影响
数学发展史上,曾发生过三次数学危机,每一次危机都由一个或几个典型的数学悖论引起。这些悖论的出现,不仅给数学带来了麻烦和失望,更重要的是,它们推动了数学的繁荣和发展。2. 毕达哥拉斯悖论与第一次数学危机 公元前六世纪,毕达哥拉斯学派提出了“万物皆数”的哲学观点,认为宇宙的本质就是数的...
数学基础三次数学危机
历史上,数学经历了三次深刻的危机,每一次都标志着数学观念和理论的革新。第一次危机发生在公元前5世纪的毕达哥拉斯学派,希帕索斯的发现揭示了不可共度线段的存在,即正方形对角线与边的关系并非有理数所能表达。这一发现促使无理数和几何公理体系的建立,最终孕育了欧几里得几何原本。尽管早期的几何学...
数学的三次革命是什么?
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。由两千多年后的数学...
三次数学危机分别是哪三次?
简单来说: 第一次数学危机:无理数的发现。 第二次数学危机:十七、十八世纪关于微积分发生的激烈的争论。 第三次数学危机:康托的一般集合理论的边缘发现悖论。 补充: 专业术语 表达: 第一次数学危机:不可通约性的发现。 第二次数学危机 : 无穷小量 是否存在。 第三次数学...
数学危机有几次
数学危机有三次。数学史上的三次数学危机分别发生在公元前5世纪、17世纪、19世纪末,都是发生在西方文化大发展时期。因此,数学危机的发生,都有其一定的文化背景。这三次数学危机分别是:第一次:古希腊时代,由于不可公度的线段——无理数的发现与一些直觉的经验想抵触而引发的。第二次:是在牛顿和...