排列,组合的例题每次做时都经常错,有啥典型解题方法?

如题所述

第1个回答  2013-10-19
1.位置元素——优待法
所谓“优待法”是指在解决排列组合问题时,对于有限制条件的元素(或位置)要优先考虑.

【例1】在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个.

解法一 元素优先数字0、1、2、3、4、5中含有0元素,组成四位数时,0不能放在首位.又所求四位数不能被5整除,因而可以根据是否含有0和5两个元素将所求四位数分成四类:第一类:含0不含5的四位数,共有=48(个);第二类:含5不含0的四位数,共有 =72(个);第三类:含0也含5的四位数,共有=48(个);第四类:不合0也不含5的四位数,共有=24(个).所以,符合条件的四位数共有48+72+48+24=192(个).

解法二 位置优待根据所求四位数对首末两个位置的特殊要求可以分步解答:第一步:排个位——个位上的数字只能从1、2、3、4这四个数字中任选一个,共有种选法;第二步;排首位——首位上的数字只能从1、2、3、4这四个数字被个位选掉后剩余的三个数字及数字5中任选一个,共有种选法;第三步:排中间两位,中间两柱可以从个位和首位排好后剩余的数字四个数字中任选两个,共有 种排法.所以符合条件的四位数共有=4×4×4×3=192(个).

〔注〕这道例题是典型的限制排列组合题.解题时,若从元素入手(即元素优先),常要分类讨论,分类时要注意堵漏防重;若从位置入手(即位置优待1,常要分步解答,分步时要注意分步完整,各步相连.

2.相邻元素——捆绑法

在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.

【例2】有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种.(结果用数值表示)

解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步计数原理共有排法=1440(种).

〔注〕运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题.

3.相间元素——插空法

不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开.解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法.

【例3】用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个.(用数字作答)

解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个大元素的内部中间只能排2,两边排1和4,因此大元素内部共有种排法,再把5与6也捆绑成一个大元素,其内部也有种排法,与数字3共计三个元素,先将这三个元素排好,共有种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有种插法,所以符合条件的八位数共有=288(种).

〔注〕运用插空法解决不相邻问题时,要注意欲插入的位置是否包含两端位置.

4.正难则反——排除法

对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.
第2个回答  2013-10-19
你好,这个可以参考课文的,希望能帮到您,给个好评吧亲,谢谢啦
第3个回答  2013-10-19
代入X进去就容易多了

高中数学排列组合常用解题方法
5、处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。6、在解决排列组合综合问题时...

高中数学排列组合常用解题方法
1、方法一:插空法;2、方法二、捆绑法;3、方法三、转化法;4、方法四、剩余法;5、方法五、对等法;6、方法六、排除法等各类经典快速解法 解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高.通过多年的教学 我们会发现,学生解决排列组合问题时出现的错误往往具有普遍性,因此,分析学生 ...

高中数学排列组合如何掌握其中的技巧(不会做题,一做就错)?
1.要掌握排列组合计算根源在于掌握加法原理和乘法原来,了解公式的推导思想。2.不要盲目套公式,明白什么时候需要分类,什么时候需要分布。3.当需要分步的时候就需要用乘法公式,要考虑该怎么乘,选择适当的公式带入即可。4.一般来说,排列组合问题都是可以多种方法求解。根据求解结果,多解析几遍,寻找多...

排列组合问题的解题方法归纳
解决排列组合问题,可采用以下技巧:首先,特殊元素优先考虑,如优先安排限制性大的元素。其次,面对排列组合混合问题,先选择后排列,简化复杂度。接着,处理相邻问题时,使用“捆绑”策略,将相邻元素视为整体;而相间问题则以“插空”法,找到元素插入的位置。定序问题则需通过除法进行处理,避免重复计算。

做数学排列组合问题有哪些方法,帮助啊!(详)
三、解排列组台混合问题——采用先选后排策略 对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略。四、正难则反、等价转化策略 对某些排列组合问题,当从正面入手情况复杂,不易解决时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理。即采用先求总的排列数(或组合数),再...

排列组合到底有多少种题型,我总是做不到,仅思考到一点,求解题套路...
解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。例4. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位...

公务员考试当中的排列组合问题有没有快速解题方法?
在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。一、捆绑法 精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。...

公务员考试,行测排列组合题怎么做啊
一、捆绑法 应用环境:题干要求某几个元素必须相邻。使用方式:先将相邻元素捆绑在一起,看成一个整体;再将这个整体看做一个大元素,和其他元素一起排列。例1.甲、乙、丙、丁、戊,五个同学排队照相,甲乙同学必须站在一起,问有多少种站法?( )A、20 B、24 C、40 D、48 二、插空法 应用...

排列组合的解题技巧有哪些
例如在方法2中的例题,就可以用此种方法来解答:5张卡片排成三位数,共有A 种排法,但0不能排在首位,所以需要去除这种情况;而且因为是偶数所以3、5不能排在最后一位,所以也要去除。故共有A -A -A A A =30。5、相邻捆绑法,相隔插空法 在解答几个元素相邻的排列组合问题时,我们应先从...

数学如何做排列组合的题啊 ~~屡做屡错!!求解题思想!!!
[例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有___个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,...

相似回答