求((tan(tanx))-(sin(sin x)))/(x-sin x)在x趋向于0的极限
第1个回答 2014-02-24
等价无穷小代换加上泰勒展开,答案为6
第2个回答 2013-12-01
利用等价无穷小替换和洛必达法则可解:
lim(x→0)[tan(tanx) - sin(sin x)]/(x-sinx)
= lim(x→0){[sin(sin x)]/sinx}*lim(x→0)[1/cos(sin x)]
*lim(x→0){sinx[1 - cos(sin x)]/(x-sinx)}
= 1*1*lim(x→0){sinx[1 - cos(sin x)]/(x-sinx)}
= lim(x→0)[sinx(1/2)(sin x)^2]/(x-sinx)
= lim(x→0)[(1/2)x^3]/(x-sinx) (0/0)
= lim(x→0)[(3/2)x^2]/(1-cosx)
= 3。
Warning: Invalid argument supplied for foreach() in /www/wwwroot/aolonic.com/skin/templets/default/contents.html on line 45
相似回答