对此问题本人赞同您的答复
但为什么不能这样做:
先从5选4,这4个任放入4个盒,剩下的1个从4盒任挑一个放
既C54*A44*C41?
我要排列组合的题
1、将3个不同的小球放入4个盒子中,则不同放法种数有( )A、81 B、64 C、12 D、14 2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、 3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数()A、64 B、60 C、24 D、256 4、3张不同的电影票全部分给10个人,...
高中数学排列组合中各种题型分类方法?
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有 种方法,根据分步计数原理装球的方法共有 练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同...
求高中数学排列组合解题技巧
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有 种方法,根据分步计数原理装球的方法共有解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略...
有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有( )不同...
A 试题分析:先将5个小球分成4组,共 种分法,再将4组分配到4个不同的盒子里共有 种方法,所以共 种分配方案点评:较复杂的排列组合问题一般都采取先分组再分配,结合分步计数原理求解
有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有( )不同...
第一步从5个球中选出2个组成复合元共有C25=10种方法.第二步,再把4个元素装入4个不同的盒内有A44=24种方法,根据分步计数原理装球的方法共有10×24=240种方法.故选:A.
有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同...
第一步从5个球中选出2个组成复合元共有C25种方法.再把4个元素 装入4个不同的盒内有A44种方法,根据分步计数原理装球的方法共有C25*A44
有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同...
设5个小球为abcde,你前面的那个C43步骤的分法只能分成(ab,c,d,e)(a,bc,d,e)(a,b,cd,e)(a,b,c,de)这四种,因为你进行C43即隔板法时球的顺序固定了,只有a,b,c,d,e这一个顺序,忽略了(ac,b,d,e)(ae,b,c,d)(………)(………)(剩下的就不写了)……等结果。以后这...
排列组合
例2 (95年全国)4个不同的小球放入编号为1、2、3、4的四个盒内,则恰有一个空盒的放法有几种? 解:由题意,必有一个盒内有2个球,同一盒内的球是组合,不同的球放入不同的盒子是排列。因此,有C42A43=144种放法。 练习2 由数字1,2,3,4,5,6,7组成有3个奇数字,2个偶数字的五位数,数字不重复的...
求解数学问题
2第一步从5个球中选出2个组成复合元共有C(2,5)=10种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有A(4,4)=24种方法,根据分步计数原理装球的方法共有24×10=240种 这是我在静心思考后得出的结论,如果能帮助到您,希望您不吝赐我一采纳~(满意回答)如果不能请追问,我会尽...
...个有编号的小盒中去,每小盒至少有1个球,共有多少种放法
种不同的放法.点拨:以上三种解法从不同的角度考虑问题,收到了殊途同归之效.解法二可视为是先分堆,再装盒.解法三采用了"隔板模型"将不可辨的球装入到可辨的盒子中,求装的方法数,常用此模型.如将12个完全相同的球排成一排,在它们之间11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同...