二阶常系数非齐次线性微分方程怎么求通解?

第一步,应该是解对应的齐次方程特征方程的解λ1与λ2第二部,判断是不是方程的根,或者某个是单根还是重根。第三部,设特解 (我就是这里不太清楚,特解的形式一般怎么去设?比如图中两个方程明明形式相同,为什么设的特解形式不同???一个是y*=Axe^λx,一个是y*=x(Ax+B)e^λx)第四步,代入原方程化简,得到AB的式子,比较同类项系数,解出AB (请问是原方程那个方程?要求的二阶常系数非齐次线性微分方程么?比较同类项系数是和谁比较啊?)之后的就会了。

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),特解

1、当p^2-4q大于等于0时,r和k都是实数,y*=y1是方程的特解。

2、当p^2-4q小于0时,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1/2(y1+y2)是方程的实函数解。

扩展资料:

一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,通解是由其对应的齐次方程的通解加上其一个特解组成。

一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为y'+p(x)y=Q(x)。

齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-07-01
特征方程 2r^2+r-1=0 (2r-1)(r+1) r=1/2,r=-1 所以齐次通解 y=C1e^(x/2)+C2e^(-x) 设特解为y=ae^x y'=y''=y=ae^x 代入原方程得 2ae^x+ae^x-ae^x=2e^x a=1 因此特解y=e^x 因此非齐次通解是y=C1e^(x/2)+C2e^(-x)+e^x追问

那为啥第一张图上设通解用了两个未知数呢,为啥第二个用一个呢 ?

本回答被网友采纳
第2个回答  2013-04-09
1.对于这种类型的二阶非齐次微分方程,求解的方法:
(1)先求出对应的齐次微分方程的通解:Y
(2)再求出该方程的一个特解:Y1
则方程的通解为:Y+Y1
2.方程特解的求法:
形如y''+py'+qy=Acosωx+Bsinωx 的方程,有如下形式的特解:y1=x^k(acosωx+bsinωx)
其中 a、b为待定系数,k的取值方法如下:
(1)当±iω不是方程y''+py'+qy=Acosωx+Bsinωx对应的齐次方程的特征根时,k=0
(2)当±iω是方程y''+py'+qy=Acosωx+Bsinωx对应的齐次方程的特征根时,k=1
第3个回答  2019-03-13
等号右端不是p(x)e^(ax)吗
特解设为x^k Q(x)e^(ax)
前面根据特征方程求出两个特征根来,
看a是不是特征根,
如果不是,那么k=0;如果是单特征根,那么k=1如果是二重特征根,那么k=2
Q(x)其实相当于p(x),但是只是p(x)的形式,即Q(x)是与p(x)最高次数相同的多项式。比如p(x)=x²+3,那么Q(x)就设为ax²+bx+c,求出a,b,c

二阶常系数非齐次线性微分方程怎么求通解?
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),特解 1、当p^2-4q大于等于0时,r和k都是实数,y*=y1是方程的特解。2、当p^2-4q小于0时,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1\/2(y1+y2)是方程的实函数解。

二阶常系数非齐次线性微分方程通解公式
二阶常系数非齐次线性微分方程通解公式:y'+py'+qy=f(x)。其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程...

如何求解二阶常系数非齐次微分方程的通解?
其中,C1和C2为任意常数。对于非齐次微分方程,可以通过将f(x)表示成某个特殊函数的导数形式,来求得其特解。例如,如果f(x)=P(x)e^λx,其中P(x)为某个多项式,那么特解为:y*=e^(λx)(Q(x)+P(x)\/λ),其中Q(x)为某个多项式。因此二阶常系数非齐次微分方程的通解为...

如何求二阶常系数非齐次线性微分方程的通解?
因此齐次方程通解为:C1e^x+C2e^(-x)设方程特解为:y*=axe^x 代入微分方程解得:a=1\/2 因此微分方程通解为:f(x)=C1e^x+C2e^(-x)+(1\/2)xe^x 将初始条件f(0)=1,f '(0)=1代入得:f(x)=(3\/4)e^x+(1\/4)e^(-x)+(1\/2)xe^x ...

如何求二阶常系数非齐次线性微分方程的通解
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y设法分为:1、如果f(x)=P(x) ,Pn (x)为n阶多项式。2、如果f(x)=P(x) e'a x,Pn (x)为n阶多项式。二阶常系数非齐次线性微分方程常用的几个:1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+B...

二阶非齐次线性微分方程的通解结构
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1. 如果f(x)=P(x),Pn(x)为n阶多项式;2.如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。二阶常系数齐次线性微分方程 标准形式 y″+py′+qy=0 特征方程 r^2+pr+q=0 通解 1.两个不相等的实根...

二阶线性非齐次微分方程通解
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1.如果f(x)=P(x),Pn(x)为n阶多项式;2.如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。二阶线性微分方程其实可以通过凑微分降阶法求解,但过程略微复杂,不过相应的过程却能充分体现分离变量法。值得一提的是,...

二阶常系数非齐次线性微分方程的通解公式
1、先解对应的齐次方程ay''+by'+cy=0的通解y1 解法:根据特征方程at^2+bt+c=0的解t1,t2的是单根重根和虚根来组解,具体的你查书吧,我手头没书,得到y1=y1(t1,t2)2、求得一组特解y 根据f(x)的形式设计试探特解,求出试探特解的系数,得到y 3、ay''+by'+cy=f(x)的通解:y=y1...

二阶微分方程通解的方法
对于二阶常系数齐次线性微分方程,其通解的三种情况取决于特征方程解出的特征根的情况,分三种情况:有两个单根,有一个二重根,有一对共轭复根分别讨论。而对于二阶常系数非齐次线性微分方程,其求解过程分为以下三步:先求对应的齐次方程的通解,再根据等号右边自由项求出一个特解,最后将齐次通解加上...

二阶常系数齐次 和 非齐次微分方程有虚根时,他们分别的通解公式是什么...
二阶常系数齐次微分方程的特征方程有虚根 u±vi 时,其通解是 y = e^(ux)(C1cosvx+C2sinvx)。二阶常系数非齐次微分方程的特征方程有虚根 u±vi 时,记 y* 是根据微分方程非齐次项确定的特解,则非齐次微分方程的通解是 y = e^(ux)(C1cosvx+C2sinvx) + y*。

相似回答