如图解法1中为什么选择除σ^2如果是除其它的任意平方不也服从卡方分布吗...
卡方分布要求Xi必须是标准正态分布,普通正态分布必须除以方差的平方才是标准正态分布啊。
...解释下上面标的两个问题谢谢。①为什么要除σ平方?还有抽样定理是啥...
第一个卡方分布是相互独立的“标准”正态加起来的,所有除以那个东西化为标准正态。第二个有个定理:总体服从正态N(a,σ),则 题目中分母那一块恰好等于n*S^2(S是方差,注意不要和工程上常用的那个无偏的方差搞混了)
ns^ 2 服从卡方(n)分布吗 若不能请证明
还是个自由度问题。 1个,两个x拔都不影响。 但n个元素计算出来的x拔, n个xi-x拔的式子的自由度是少一个的。其中一项可以被其余项线性表出 本回答被提问者采纳 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 为你推荐: 特别推荐 神舟13号宇航员到了!神舟十四号发射待命,国际空间站要报废? 细菌...
证明N个正态分布(u,sigma^2)的平方和服从卡方分布.
ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其分布规律称为χ2(n)分布(chi-square distribution),其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正...
在概率论中,为什么s2\/ó2是自由度为n-1的卡方分布
因为当i=1的时候 x1-x的均值恰好为x1-x1=0,所以,只有n-1个平方项。服从n-1的卡方分布
(n-1)*样本方差\/σ^2 服从自由度为 n-1 的卡方分布的证明
设 , ,是容量为 n 的正态随机样本,样本方差 ,证明: ,即服从自由度为 n-1 的卡方分布。证明如下: 在证明命题之前,我们先证明一个结论:(1). 设 n 个相互独立的标准正态随机变量 经过正交变换后为 ,则 依然是相互独立的标准正态随机变量,且 。&...
概率论中的谁会证明s^2\/σ^2服从卡方分布
这个题目不难,倒是不好输入啊:(n-1)S²\/σ² = (n-1) * 1\/(n-1) * Σ (Xi-X‘)² \/ σ²= Σ ( Xi - X’ \/ σ )²上面Σ后面就是标准化Xi的过程,就是括号里面服从正态分布(X'表示样本均值)说明它服从 参数为n 的卡方分布 ...
...S^2)样本方差的方差怎么算啊?与卡方分布什么关系
一般情况下求D(S^2)并不容易,但如果总体服从正态分布N(μ,σ^2),则(n-1)S^2\/σ^2服从自由度为n-1的卡方分布,从而D[(n-1)S^2\/σ^2]=2(n-1),可由此间接求出D(S^2)。在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对...
概率论中的谁会证明(n-1)s^2\/σ^2服从卡方分布
根据卡方分布性质可得:(均值用X* 表示,且可知X*=(∑Xi)\/n)Xi服从正态分布 N(μ,σ2),则 (Xi-μ)\/σ 服从标准正态分布 N(0,1)根据卡方分布的定义可知:∑(Xi-μ)2\/σ2服从Χ2(n)分布 X*服从正态分布 N(μ,σ2\/n),则 (X*-μ)\/ (σ\/n1\/2) 服从标准正态分布 N(0,1)...
x平方服从正太分布还是卡方分布
如果x服从正态分布N,则x平方服从N(u,(σ^2)\/n)。因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)\/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)\/n^2=σ^2\/n E(Y)= E [X] = - E [X] = 0 Y...