怎样才能学好高中数学

如题所述

第1个回答  2015-12-24
  首先你要对其感兴趣,用探索的精神去学习,想想每会一种题型后自己的收获跟那种内心的喜悦感
  其次,我觉得良好的习惯是成功的基础,平时在学习过程中,注意总结,将知识点用自己的理解写在一个本子上,建一个错题本,把每次测验做错的题目摘录到本子上,在旁边写上当初自己的错误思路,再加上正确分析,再从练习册上找几个类型相同的题目做做,写在错题集中,过一段时间要翻看这个错题本,加强记忆。相信通过日积月累,你肯定会收获很多。
  最后就是一直的坚持,不断的练习。
高中数学
  高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分
一般口诀
(一)、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
(二)、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;[2]
(三)、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
(四)、《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
(五)、《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
(六)、《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
(七)、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
高中《立体几何》
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
(八)、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
第2个回答  2009-07-17
学无止境的。

如果你只是想在考试中整个120分,还是简单的。

不过,再往上的话就得下苦功了。

先紧抓课本,打结实基础。定义与性质等,很熟悉。

书中的定理与公式,都要会推导。

教科书中,所有的习题都要会做,做熟后,才能举一反三,

最重要的是,你能够在考试时,在基础考查题中,

能够很快很准确的做完基础题,能够节省很长时间。

然后做一些课外练习题,也是检验的,

千万不要眼高手低,做钻一些难题目,跟考试成绩没有多大的益处的。

出现的错题,用一个笔记本,搞一个错题集,
出现的好题,也用一个笔记本,搞一个好题集。

这两类题要经常反复的温习。

最后,再找一些专题:分类型的问题,对照着研究一下。

此时,只要你不是“竹子头”,我就不信,你的数学成绩上不了120分,

我个人认为基本上,能够稳定在,130分左右,偶尔还可能到140分以上。本回答被提问者采纳
第3个回答  2015-12-03
  学好高中数学方法,
  1、先看笔记后做作业。 有的高中学生感到。老师讲过的,自己已经听得明明白白了。原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
  2、做题之后加强反思。 学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
  3、主动复习总结提高。 进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。积累资料随时整理。 要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
  4、精挑慎选课外读物。 初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则不大相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事半功倍。
  5、配合老师主动学习。 高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。合理规划步步为营。 高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,详细的安排好自己的零星时间,并及时作出合理的微量调整。
第4个回答  2015-12-05
1
一个人从小学到高中,要学习十二年数学。高中毕业后升入大学继续深造,无论是理工科还是文史类大学,都还要继续学习数学。高考几十年改革改来改去,“语、数、外”都是必考内容。而且数学学习对于发展高中生的思维品质和思维水平及其重要。要想使自己更聪明,要想将来成为有用人才,要想为终身事业打好基础、夺取主动,必须学好数学。怎样才能学好高中数学呢?首先得明确高中数学与初中数学的衔接与差异。 一、 高中数学课的设置 高中数学内容丰富,知识面广泛,将有:五本必修,2至3本选修,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。 二、初中数学与高中数学的差异。 1、知识差异。 初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0 —180 ”范围内的,但实际当中也有“720 ”和“—300 ”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种

2
比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i =-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。 2、学习方法的差异。 (1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。 (2)模仿与创新的区别。 初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对

3
创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。 3、学生自学能力的差异 初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学也能取得好成绩。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。 其实,自学能力的提高也是一个人生活的需要,它从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其他时间靠自学最终达到了自强。 4、思维习惯上的差异 初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,
第5个回答  2015-12-25
1、认识高中数学的特点,只有知道高中数学的特点才能够更好的学习好高中数学
  高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。

2、正确对待学习中遇到的新困难和新问题,要相信自己,要有信心克服一切困难。
  在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

3、要提高自我调控的“适教”能力,做一个能够听懂老师教课的好学生。
  一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教师的特点,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。

4、要养成良好的预习习惯,提高自学能力,预习非常关键,每次上课之前都要预习。
  课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。

5、要养成良好的演算、验算习惯,提高运算能力,计算过程也是非常重要的,如果第一步做错了,那后面的根本就不用做了。
  学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。

高中如何学好数学
1、先看笔记后做作业:每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看,能否坚持如此常常是好学生与差学生的最大区别。2、做题之后加强反思:学生一定要明确现在正做着的题,一定不是考试的题目,而是要运用现在正做着的题目的解题思路与方法。3、积累资料随时整理:要注意积累复习...

高中怎样学好数学提高成绩
多做数学题目是提高成绩的有效方法。高中数学内容丰富,通过练习加深理解。应试教育下,多做练习是普遍做法,因为考试范围基本固定,围绕教科书和大纲出题。多做题目能提高效率。学习数学时,避免自满,不要轻视简单题目。它们是学习的基础,科学、务实、踏实的态度才能真正学好数学。冲动和盲目自信只会阻碍进步...

怎样才能学好高中数学 方法和技巧是什么
2、做多数学题目 高中数学的学习内容比较多,只有通过多做数学题目才能加深对所学内容的理解。一般来说,在应试教育的指挥棒下,多做练习题目是所有高中科目都采取的一种方式。因为考试的大纲是相对固定不变的,而且考试范围也不会超过教科书和考试大纲的范围。3、学会独立思考 高中数学的学习需要具备一定...

高中数学怎样才能学好
1、先看笔记后做作业,有的高中学生感到老师讲过的自己已经听得明明白白了,但是自己一做题就困难重重。其原因在于学生对教师所讲的内容的理解还没能达到教师所要求的层次。2、因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看,能否坚持如此常常是好学生与差学生的最大区别。3...

怎样才能学好高中数学
2、一定要做好预习,带着预习中的问题走进课堂,能让数学学习事半功倍;做完作业要仔细检查;老师要求的练习要认真完成。3、少动笔而能学好数学的天才是没有的,所以在业余时间要多做习题,本着熟能生巧的心态一定会有所收获。4、数学考试的策略非常重要。考试时的题目一般都是先易后难,要把握住...

高中数学怎么学才能提高成绩
高中数学怎么学才能提高成绩1.培养数学思维是学好数学的前提数学最主要的就是思维方式,如果你懂了数学如何去思考,就能懂得命题人是如何出题的,知道怎么去分析一道题目,该如何入手去解一道题。数学思维能帮助我们理清解题思路,根据已知条件,一步步推出未知条件。初中数学好不代表高中数学就一定好,所学的...

怎样学好数学高中
数学提分技巧 一、聪明预习 每天10分钟预习,强制记忆基本概念。掌握概念,做题快准。二、基本概念为本 深入理解并准确记忆基本概念,思维发散了解概念外延。概念过关,做题效率提高。三、作业强化 认真完成作业,暴露问题,加深理解。不省步骤,全面复习。四、独立攻克难题 掌握文字语言、符号语言、图形语言...

高中如何学好数学?
要学好高中数学,需要掌握以下几个关键点:1. 建立坚实的基础:高中数学是建立在初中数学基础上的,所以首先要确保自己对初中数学知识掌握扎实。如果对某些概念或技巧不熟悉,可以回顾相关的知识点,做一些练习巩固。2. 注重概念理解:数学是一门逻辑性很强的学科,要理解概念和定义的含义。对于每个新的...

高中生怎样学好数学
2、这样才能更好地运用它来解决问题,掌握解题思路,每看一道题目,就应理清思路,掌握思维方法,再遇到类似的题目,心中有印象。3、如果没有十分的把握,不要凭借主观臆断,勤于练习,通过做综合题,可以知道不足所在,弥补不足,提高数学水平。4、多做练习要长期坚持,时间长了才会有明显的效果和较大...

怎样才能学好高中数学呢
2、千万不要用题海战术,高中的辅导书满天飞,质量良莠不齐,一般来说,学校都会配有辅导书或者练习题什么的,这一般都是老师们集体谈论为同学们精心挑选的,把那上面的习题以及课本和上课的例题搞懂。3、学习的过程是循序渐进的,如果数学真是太差的话,建议先把公式定理什么的都给看一遍,理解其中的...

相似回答