求讲解:排列组合的题目:五个人排队,甲不能在队首,乙不能在队末,并不...
一是乙站在队首,这时有A(4,4)=24种方法 二是乙不站队首,则乙有2种位置(2和4位),甲有3种位置(除了1位和乙的剩余3个),剩余3人A(3,3)有2*3*A(3,3)=36种 所以总共有24+36=60种排列。
五个人排队,甲乙不能在队首和队末,一共有几种排法
P5(5)=5!=120 甲在队首,乙在队末P3(3)=6,甲在队首,乙不在队末,P4(4)-P3(3)=18,排法120-2×(6+18)=72(种)。
为什么排列~组合~概率~的数学题这么难类~~给点技巧~~重重有赏~!_百度...
分析: 把甲、乙、丙三人看作一个“元”,与其余4人共5个元作全排列,有 种排法,而甲乙、丙、之间又有 种排法,故共有 种排法。四、总体淘汰法 对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。例如在例3中,也可用此法解答:五个数字组成三位数...
关于高中排列,组合的问题
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有 种,所以共有 =72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那...
高考数学里的排列与组合问题怎么解决
关键词: 排列组合,解题策略 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,...
高中的排列组合问题
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。 评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。 二、不相临问题——选空插入法 ...
怎样学好排列组合???
怎样学好排列组合??? 我来答 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: 特别推荐 为什么越来越多的大学生主动选择“延迟毕业”? 二阳前有预兆吗?比首阳症状轻吗? 职场中的「好学生困境」指什么?怎么走出这种困境? 经济在逐步回暖,为什么房价跌幅如此之...
谁能给我详细讲解一下排列与组合,谢谢
⑵甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:⑴按照先排出首位和末尾再排中间四位分步计数第一步:排出首位和末尾、因为甲乙不在首位和末尾,那么首位和末尾实在其它四位数选出两位进行排列、一共有A(4,2)=12种;第二步:由于六个元素中已经有两位排在首位和末尾,因此中间四位是把剩下的四位元素进行...
排列组合常用方法总结
(1)甲不在排头,乙不在排尾的排列数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。 第一类:乙在排头,有种站法。 第二类:乙不在排头,当然他也不能在排尾,有种站法, 共+种站法。 (2)第一类:甲在排尾,乙在排头,有种方法。
数学运算排列,组合公式
(2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有 种,故共有 · =3600种不同排法。 (3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有 ·=1400种不同的排法。 (4)甲...