关于臭氧层的资料

关于臭氧层黑洞的资料

科技名词定义
中文名称:臭氧层 英文名称:ozonosphere;ozone layer 定义1:地球上空10~50 km臭氧比较集中的大气层, 其最高浓度在20~25 km处。 所属学科: 大气科学(一级学科) ;大气(二级学科) 定义2:在平流层中距地表10~50 km高度的臭氧圈层。 所属学科: 生态学(一级学科) ;全球生态学(二级学科)
本内容由全国科学技术名词审定委员会审定公布
百科名片
臭氧层是指大气层的平流层中臭氧浓度相对较高的部分,其主要作用是吸收短波紫外线。大气层的臭氧主要以紫外线打击双原子的氧气,把它分为两个原子,然后每个原子和没有分裂的氧合并成臭氧。臭氧分子不稳定,紫外线照射之后又分为氧气分子和氧原子,形成一个继续的过程臭氧氧气循环,如此产生臭氧层。自然界中的臭氧层大多分布在离地20—50千米的高空。臭氧层中的臭氧主要是紫外线制造。
目录[隐藏]

概述
作用
测量
破坏
国际保护臭氧层日
危机
保护
南极臭氧层空洞
最新成果概述
作用
测量
破坏
国际保护臭氧层日
危机
保护
南极臭氧层空洞
最新成果

臭氧层
[编辑本段]概述
臭氧层人类真正认识臭氧是在150多年以前,德国化学家先贝因博士首次提出在水电解及火花放电中产生的臭味,同在自然界闪电后产生的气味相同,先贝因博士认为其气味类似于希腊文的(意为“难闻”),由此将其命名为臭氧)。 自然界中的臭氧,大多分布在距地面20Km--50Km的大气中,我们称之为臭氧层。臭氧层中的臭氧主要是紫外线制造出来的。大家知道,太阳光线中的紫外线分为长波和短波两种,当大气中(含有21%)的氧气分子受到短波紫外线照射时,氧分子会分解成原子状态。氧原子的不稳定性极强,极易与其他物质发生反应。如与氢(H₂)反应生成水(H₂O),与碳(C)反应生成二氧化碳(C0₂)。同样的,与氧分子(O₂)反应时,就形成了臭氧(O₃)。臭氧形成后,由于其比重大于氧气,会逐渐的向臭氧层的底层降落,在降落过程中随着温度的变化(上升),臭氧不稳定性愈趋明显,再受到长波紫外线的照射,再度还原为氧。臭氧层就是保持了这种氧气与臭氧相互转换的动态平衡。 在这么广大的区域内到底有多少臭氧呢?估计小于大气的十万分之一。如果把大气中所有的臭氧集中在一起,仅仅有三公分薄的一层。那么,地球表面是否有臭氧存在呢?回答是肯定的。太阳的紫外线大概有近1%部分可达地面。尤其是在大气污染较轻的森林、山间、海岸周围的紫外线较多,存在比较丰富的臭氧。 此外,雷电作用也产生臭氧,分布于地球的表面。正因为如此,雷雨过后,人们感到空气的清爽,人们也愿意到郊外的森林、山间、海岸去吮吸大自然清新的空气,享受自然美景的同时,让身心来一次爽爽快快的“洗浴”,这就是臭氧的功效,所以有人说,臭氧是一种干净清爽的气体。臭氧有极强的氧化性,少量的臭氧会使人感到精神振奋;但过强的氧化性也使其具有杀伤作用。一些过敏体质的人,长时间暴露在臭氧含量超过180微克/立方米的环境,会出现皮肤刺痒、呼吸不畅、咳嗽及鼻炎等症状。
[编辑本段]作用
大气臭氧层主要有三个作用。其一为保护作用,臭氧层能够吸收太阳光臭氧层阻挡紫外线中的波长306.3μm以 下的紫外线,主要是一部分UV—B(波长290~300μm)和全部的UV—C(波长<290μm=,保护地球上的人类和动植物免遭短波紫外线的伤害。只有长波紫外线UV-A和少量的中波紫外线UV-B能够辐射到地面,长波紫外线对生物细胞的 伤害要比中波紫外线轻微得多。所以臭氧层犹如一件保护伞保护地球上的生物得以生存繁衍 。其二为加热作用,臭氧吸收太阳光中的紫外线并将其转换为热能加热大气,由于这种作用 大气温度结构在高度50km左右有一个峰,地球上空15~50km存在着升温层。正是由于存在着 臭氧才有平流层的存在。而地球以外的星球因不存在臭氧和氧气,所以也就不存在平流层。 大气的温度结构对于大气的循环具有重要的影响,这一现象的起因也来自臭氧的高度分布。其三为 温室气体的作用,在对流层上部和平流层底部,即在气温很低的这一高度,臭氧的作用同样非常重要。如果这一高度的臭氧减少,则会产生使地面气温下降的动力。因此,臭氧的高度分布及变化是极其重要的。 臭氧是无色气体,有特殊臭味,因此而得名“臭氧”。由太阳飞出的带电粒子进入大气层,使氧分子裂变成氧原子,而部分氧原子与氧分子重新结合成臭氧分子。距地面15~50千米高度的大气平流层,集中了地球上约90%的臭氧,这就是“臭氧层”。 地球上的一切生物离开太阳光就没有生命。太阳光是由可见光、紫外线、红外线三部分组成。进入大气层的太阳光(包括紫外线)有55%可穿过大气层照射到大地与海洋,其中40%为可见光,它是绿色植物光合作用的动力;5%是波长100~400纳米的紫外线,而紫外线又分为长波、中波、短波紫外线,长波紫外线能够杀菌。但是波长为200~315纳米的中短波紫外线对人体和生物有害。当它穿过平流层时,绝大部分被臭氧层吸收。因此,臭氧层就成为地球一道天然屏障,使地球上的生命免遭强烈的紫外线伤害。然而,近10多年来,地球上的臭氧层正在遭到破坏。
[编辑本段]测量
臭氧的测量包括铅直气柱中臭氧总量的测量和臭氧浓度铅直分布的测臭氧层对地球的危害示意图量两种。测量方法分直接法和间接法:前者对臭氧进行采样分析;后者在臭氧层外进行测量,大都用光谱分析方法。臭氧测量结果,除采用通常的单位表示外,还用多布森单位,记为DU,它等于千分之一厘米(标准状态臭氧层厚)。 臭氧间接测量法:光谱分析法是观测穿过大气层的太阳直射光或散射光的光谱,然后计算出臭氧含量及其铅直分布。在臭氧吸收带中(见大气臭氧层),太阳直射光或散射光穿过大气层,受到臭氧分子的吸收,并受到气体分子和气溶胶粒子的散射。波长为λ的单色太阳光,通过大气层时辐射强度的削弱服从比尔定律。测量臭氧的常用光学仪器有多布森分光光度计和M-83滤光片臭氧仪。多布森分光光度计被认为是测量臭氧的标准仪器。其他类型的仪器都必须定期用它校准。M-83滤光片臭氧仪主要在苏联和欧洲的部分国家使用。用气象卫星也可以测得全球臭氧的分布。如雨云4号卫星上用后向散射紫外光谱仪和红外干涉光谱仪进行大气臭氧的观测。前者测量大气对太阳光的后向紫外散射,它接收2500~3400埃中12个波段的紫外光谱,由此反演出大气臭氧含量全球的分布;后者除了测量大气温度和湿度外,还测量大气臭氧(9.6微米波段,在此波段中接收 4个波长的辐射)。将这两种光谱仪结合起来,可以探测大气臭氧浓度随高度的分布,例如在雨云 6号卫星上,有临边辐射反演辐射仪(LRIR),它接收大气臭氧9.6微米辐射带的信息,用辐射传输方程反演,可获得臭氧的铅直分布。 臭氧直接测量法 用电化学或化学发光方法测量臭氧含量,可不受大气透明度和天气条件的限制,白天或黑夜均可进行观测。 臭氧测量方法各有优缺点,常常要用多种方法互相补充,互相比较,以求获得完整可靠的资料。
[编辑本段]破坏
1、原因:地球上有一层保护膜,存在于包围在地球的大气中,就是臭氧国际保护臭氧层日相关图片层,臭氧层会将紫外线挡在地球外面,保护地球上的生物不会受到伤害。人类制造了大量会破坏臭氧层的物质,使地球南北极的臭氧层受到破坏。 2、影响:臭氧层被破坏造成地球紫外线增加,紫外线会破坏包括DNA在内的生物分子,还会增加罹患皮肤癌、白内障的机率,而且和许多免疫系统疾病有关。海洋中的浮游生物受致命的影响,海洋生态系统受破坏。农作物减产。加强温室效应。 3、我们不应该做的事:氟氯碳化物的使用,购买空调、冰箱、汽车、喷雾剂等,应选购不含氟氯碳化物的产品。 4、补充资料:大气中的臭氧绝大部分都集中在离地面大约25~30公里的上平流层中,称为“臭氧层”。名虽为一层,但实际上臭氧分布各地并不均匀,而且大气中臭氧的总含量非常少,尚不到1ppm。这极薄的一层臭氧,对于地球上的生命非常重要,因为臭氧能吸收阳光中的紫外线,这些紫外线波长很短,而且有致命危险的辐射线,将这些紫外线转换成热能,只有极少量能到达地表。 由于臭氧在平流层中维持与氧气、氧原子等紫外线作用下的动态平衡,生物圈主要部分的耗氧量,及向上排放有可能参与或影响到此类反应(包括O₃═0₂+O′或2O₃═30₂)的物质(如氯原子)都有可能威胁 到 “臭氧层”的臭氧含量,至此呼吁节能减排,植树造林,自觉维护生态环境,十分重要。 臭氧是氧气的一种同素异形体(由相同的元素组成,但分子结构不同。)顾名思义,臭氧又一种刺鼻的气味,所以得此恶名。在大气层的10公里到50公里高度的区域,臭氧有相当的浓度,叫做臭氧层。 臭氧层被大量损耗后,吸收紫外辐射的能力大大减弱,导致到达地球表面的紫外线B明显增加,给人类健康和生态环境带来多方面的的危害,目前已受到人们普遍关注的主要有对人体健康、陆生植物、水生生态系统、生物化学循环、材料、以及对流层大气组成和空气质量等方面的影响。 过多地使用氯氟烃类化学物质(用CFCs表示)是破坏臭氧层的主要原因。氯氟烃是一种人造化学物质,要用作气溶胶,1930年由美国的杜邦公司投入生产。在第二次世界大战后,尤其是进入60年以后,开始大量使用,主制冷剂、发泡剂、化工溶剂等。另外,哈龙类物质(用于灭火器)、氮氧化物也会造成臭氧层的损耗。 在平流层内离地面20~30千米的地方是臭氧的集中层带,在这个臭氧层中存在着氧原子(O)、氧分子(0₂)和臭氧(O₃)的动态平衡。但是氮氧化物、氯、溴等活性物质及其他活性基团会破坏这个平衡,使其向着臭氧分解的方向转移。而CFCs物质的非同寻常的稳定性使其在大气同温层中很容易聚集起来,其影响将持续一个世纪或更长的时间。在强烈的紫外辐射作用下它们光解出氯原子和溴原子,成为破坏臭氧的催化剂(一个氯原子可以破坏10万个臭氧分子)。
[编辑本段]国际保护臭氧层日
1995年1月23日,联合国大会通过决议,确定从1995年开始,每年的9月16日为“国际保护臭氧层日”。旨在纪念1987年9月16日签署的《关于消耗臭氧层物质的蒙特利尔议定书》,要求所有缔约国根据“议定书”及其修正案的目标,采取具体行动纪念这一特殊的日子。 确立“国际保护臭氧层日”的历史背景 臭氧层破坏是当前面临的全球性环境问题之一,自70年代以来就开始受到世界各国的关注。联合国环境规划署自1976年起陆续召开了各种国际会议,通过了一系列保护臭氧层的决议。尤其在1985年发现了在南极周围臭氧层明显变薄,即所谓的“南极臭氧洞”问题之后,国际上保护臭氧层的呼声更加高涨。 1976年4月,联合国环境署理事会决定召开一次“评价整个臭氧层”国际会议之后,于1977年3月在美国华盛顿召开了有32个国家参加的“专家会议”。会议通过了第一个“关于臭氧层行动的世界计划”。这个计划包括监测臭氧和太阳辐射、评价臭氧耗损对人类健康的影响、对生态系统和气候的影响,以及发展用于评价控制措施的费用及益处的方法等,并要求联合国环境署建立一个臭氧层问题协调委员会。这个计划提出了对受控物质生产和使用的控制。 1980年,协调委员会提出了臭氧耗损严重威胁着人类和地球生态系统这一评价结论。 1981年,联合国环境署理事会建立了一个工作小组,其任务是筹备保护臭氧层的全球性公约。 经过4年的艰苦工作,1985年3月在奥地利首都维也纳通过了有关保护臭氧层的国际公约----《保护臭氧层维也纳公约》,该公约从1988年9月起生效。这个公约只规定了交换有关臭氧层信息和数据的条款,但对控制消耗臭氧层物质的条款却没有约束力。《公约》的宗旨和原则是正确的,促进了各国就保护臭氧层这一问题的合作研究和情报交流。 在《保护臭氧层维也纳公约》的基础上,为了进一步对氯氟烃类物质进行控制,在审查世界各国氯氟烃类物质生产、使用、贸易的统计情况的基础上,通过多次国际会议协商和讨论,于1987年9月16日在加拿大的蒙特利尔会议上,通过了《关于消耗臭氧层物质的蒙特利尔议定书》,并于1989年1月1日起生效。 “蒙特利尔议定书”规定,参与条约的每个成员组织(国家或国家集团)将冻结并依照缩减时间表来减少5种氟利昂的生产和消耗;冻结并减少3种溴代物的生产的消耗。 5组氟利昂的大部分消耗量,将从1989年7月1日起,冻结在1986年使用量的水平上;从1993年7月1日起,其消耗量不得超过1986年使用量的80%;从1998年7月1日起,减少到1986年使用量的50%。 “蒙特利尔议定书”实施后的调查表明,根据议定书规定的控制进程并不理想。 1989年3-5月,联合国环境署连续召开了保护臭氧层伦敦会议与“公约”和“议定书”缔约国第一次会议——赫尔辛基会议,进一步强调保护臭氧层的紧迫性,并于1989年5月2日通过了《保护臭氧层赫尔辛基宣言》,鼓励所有尚未参加《保护臭氧层维也纳公约》及《关于消耗臭氧层物质的蒙特利尔议定书》的国家尽早参加;同意在适当考虑发展中国家特别情况下,尽可能地但不迟于2000年取消受控氯氟烃类物质的生产和使用;尽可能早地控制和削减其它消耗臭氧的物质;加速替代产品和技术的研究与开发;促进发展中国家获得有关科学情报、研究成果和培训,并寻求发展适当资金机制促进以最低价格向发展中国家转让技术和替换设备。 1990年6月20-29日,联合国环境规则署在伦敦召开了关于控制消耗臭氧层物质的蒙特利尔议定书缔约国第二次会议。57个缔约国中的53个国家的环境部长或高级官员及欧共体代表参加了会议。此外,还有40个非缔约国的代表参加了会议。这次大会又通过了若干补充条款,修正和扩大了对有害臭氧层物质的控制范围,受控物质由原来的2类8种扩大到7类上百种。规定缔约国在2000年或更早的时间里淘汰氟利昂和哈龙。到1995年,四氯化碳将减少85%;到2000年将全部淘汰。到2000年,三氯乙烷将减少70%;2005年以前全部淘汰。 氮的氧化物同样也会破坏臭氧层例如NO₂在大气中发生如下反应: 臭氧层与生命 1995年诺贝尔化学奖授于对臭氧层的浓度平衡机制研究卓有成效的3位大气化学家,克鲁岑、罗兰和莫里那。从1840年Soh” nbein发现臭氧气体至今已157年,在这漫长的岁月中,随着科学及测量技术的不断进步,人类对臭氧层的认识日益深入,其中有著名的Chapman臭氧层光化学理论(1930年)及罗兰-莫里那理论(1974年)。1985年,法曼发现南极臭氧层有严重损失,1995年初,美国太空总署发布了卫星遥感测量结果,证实了罗兰-莫里那理论,使人们认识到臭氧层对于生命、全球气候以及人类的未来至关重要。 在地球的大气层中,臭氧(O₃)的含量极少,仅占空气的几百万分之一,主要集中在离地面10~50km的平流层,臭氧和氧气是氧元素的同素异构体,呈淡蓝色,因有一种鱼腥臭味,故名臭氧。1930年首次提出了高空臭氧形成和破坏的理论,认为,臭氧的形成及破坏均与太阳中紫外辐射有关。 氧及臭氧层的出现是生物进化发展的一个非常重要的转折点。据考,约25亿年前,地球不存在气体氧或很少,因而太阳中的紫外辐射可直接到达地球表面,太阳辐射的总能量中,紫外区段占到近1.5%。高能量的紫外辐射对化学进化乃至生命诞生的化学反应起到很重要的作用,尤其是240~290纳米的紫外区段对今天的生命本质物质——核酸和蛋白质有严重的破坏作用,假如没有臭氧层挡住紫外辐射,地球陆地上将荒芜一片,现在任何形式的生命在陆地上断难存在,这或许是生命诞生于原始海洋中的原因之一,有些科学家就曾提出,在原始海洋中的一定深度——足以过滤大多数紫外辐射,留下充分的紫外辐射来促成生命前驱的化学反应。 另外,有资料表明,生命在34亿年前就已发生,那时的生命只能存在于海洋中,以防止紫外辐射的灼伤致死。其次,其进化速度与后来的生物相比甚为缓慢,因为海洋环境较之陆地环境稳定而均一得多。然而,海洋中的有机物毕竟是有限的,栖息于海洋中的原始生物生息发展最终会因食物匮乏而面临灭顶这灾,在这严重的选择压力下,能进行光合作用自己制造营养的自养生物诞生了,它们固定太阳能,用CO₂合成营养,同时放出O₂。由于自养生物不断发展,地球大气中O₂的浓度不断升高,当时地球上的原始生物,绝大多数是厌氧的,然而为了生存,有许多形式的生命被迫接受了O₂。这样,O₂的大量出现,改变了生物进化的过程,第一,接受了O₂的生物由原来的无氧呼吸变成了有氧呼吸,呼吸效率因此而提高了大约19倍,得到迅速而蓬勃的发展;第二,大量氧气吸收紫外辐射在地球中层大气形成了臭氧层,为海栖生物登陆发展提供了前所未有的“安全”环境,确实,当初简单的动物正是有氧后出现并得到进化发展的。在这漫长的二十几亿年的发展中,生命不知经历了多少次的兴衰。然而其间无论是旧种的灭绝,还是新种的诞生,除极少数生命早期遗留下来的厌氧种外,其余无一例外都是需氧的,尤其是产氧的绿色植物的繁荣发展,使臭氧层与生物相互依赖到了今天。然而,现在,臭氧层越来越受到人类活动的威胁。1985年,英国的约瑟夫·法曼在《自然》杂志上发表了他在南极做了近30年的臭氧观测结果,南极的臭氧浓度在几年间剧降了50%。高空臭氧本身存在自然的生成和破坏的动态平衡机制,然而随着人类工业文明的高度发展,这种平衡正在被人类所打破,尤其是本世纪以来,人造的氯氟碳化物,如CFC-11及CFC-12(俗称氟城昂)等,被广泛用作气雾剂、烟雾剂的压缩气体、泡沫充填材料及冰箱等的制冷介质。这些氯氟碳化物会在产品使用过程中或寿命结束后,被排放到大气中。由于此类物质性质极稳定,唯一的损失途径是紫外辐射照射下分解。当它们飘至臭氧层上空,高能的紫外辐射破坏其碳氯键,释放出氯原子。氯原子像催化剂一样,使臭氧破坏而消耗,即 Cl+O₃→ClO+O₂,ClO+O→Cl+O₂。据计算,平均一个氟原子可以消耗10万个臭氧分子。对臭氧层有严重影响的还有氮氧化物,最明显的是NO。NO的来源主要是微生物的活动及飞机和汽车发动机产生的。此外,甲烷也被认为是对臭氧层破坏有重要影响的物质。据科学家估算,高空臭氧每减少1%,就会有额外2%的紫外辐射到达地球表面。这些紫外辐射会严重损伤动植物,并使人类皮肤癌的患病率大大提高。 臭氧层除了屏蔽大量太阳中的紫外辐射外,还参与了大气环流。臭氧的减少,不仅直接给地球上的生命带来惨重的损失,而且使地球大气低层变暖、高层变冷,加重温室效应,从而导致地球气候和大气形式的更大变化。 近年来,大气臭氧研究在国际组织的协调下显得十分活跃。相信在21世纪人类定会为保护臭氧层做出卓有成效的努力。 相当于催化臭氧分解成为氧气,又让人类提高了生活水平。 人类不断向地球排放二氧化碳等废气,把大气弄脏了,使地球像在大热天里穿了一件脏棉袄,体温不断地升高。过往我们在冬天穿大棉袄,戴棉手袜,现在只穿一件毛衣也不觉得冷,这就是臭氧层被破坏的表现。由于各种废气的排放,使臭氧层产生了“空洞。臭氧层的作用很大:臭氧层能够吸收太阳光中的波长300 μm以 下的紫外线,保护地球上的人类和动植物免遭短波紫外线的伤害。所以臭氧层犹如一件宇宙服保护地球上的生物。
[编辑本段]危机
臭氧层耗竭,会使太阳光中的紫外线大量辐射到地面。紫外线辐射增强,对人类及其生存的环境会造成极为不利的后果。有人估计,如果臭氧层中臭氧含量减少10%,地面不同地区的紫外线辐射将增加19%~22%,由此皮肤癌发病率将增加15%~25%.另据美国环境局估计,大气层中臭氧含量每减少1%,皮肤癌患者就会增加10万人,患白内障和呼吸道疾病的人也将增多。系外线辐射增强,对其他生物产生的影响和危害也令人不安。有人认为,臭氧层被破坏,将打乱生态系统中复杂的食物链,导致一些主要生物物种灭绝。臭氧层的破坏,将使地球上三分之二的农作物减产,导致粮食危机。紫外线辐射增强,还会导致全球气候变暖。
[编辑本段]保护
爱护臭氧层的消费者购买带有"无氯氟化碳"标志的产品; 爱护臭氧层的一家之主合理处理废旧冰箱和电器,在废弃电器之前,除去其中的氟氯化碳和氟氯烃制冷剂; 爱护臭氧层的农民不用含甲基溴的杀虫剂,在有关部门的帮助下,选用适合的替代品,如果还没有使用甲基溴杀虫剂就不要开始使用它; 爱护臭氧层的制冷维修师确保维护期间从空调、冰箱或冷柜中回收的冷却剂不会释放到大气中,做好常规检查和修理泄漏; 爱护臭氧层的办公室员工鉴定公司现有设备如空调、清洗剂、灭火剂、涂改液、海绵垫中那些使用了消耗臭氧层的物质,并制定适当的计划,淘汰它们,用替换物品换掉它们; 爱护臭氧层的公司替换在办公室和生产过程中所用的消耗臭氧层物质,如果生产的产品含有消耗臭氧层物质,那么应该用替代物来改变产品的成分; 爱护臭氧层的教师,告诉你的学生,告诉你的家人、朋友、同事、邻居、保护环境、保护臭氧层的重要性,让大家了解哪些是消耗臭氧层物质。 有了科学的方法,再加上我们的实际行动,我相信,在不远的将来,我们将拥有一片美丽而完整的蓝天。
[编辑本段]南极臭氧层空洞
英国南极探险队从1997年开始观察南极上空以来,每年都在9-11月发现臭氧层空洞。这个发现引起举世震惊。联合国相关组织为防止臭氧层空洞进一步扩大,决定成立保护臭氧层工作组,并制定出保护臭氧层的议定书,主要内容包括:列出了破坏臭氧物质的种类;规定了排放破换臭氧物质的限额基准;确定了限制排放破坏臭氧层物质的最后时间;确定了评估机制,规定从1990年起至少每4年对指定的措施进行一次评估。
[编辑本段]最新成果
研究臭氧层的300多位科学家,在布伊诺斯艾利斯举行的国际会议上预测,臭氧层大洞大概会在50年内闭合。研究人员说,臭氧层大洞的缩小主要是由于1987年各国开始采取措施限制向大气中排放氟利昂等到化学物质收到了预期效果。 研究人员同时指出,欧洲科学家在北极释放高空探测气球对不同高度的去层进行取样分析,并于最近发表报告指出,云层会加速臭氧层中臭氧的消耗,加剧臭氧层的破坏,这是因为云层中的微粒会激活大气中的含氟化合物。 科学家发现,云层中的微粒对氯化物的激活作用要比太阳更为厉害,这些微粒冬天被云层中的冰晶包裹,但到了春天,冰晶中的水分会被阳光蒸发,从而导致大量微粒出现在云层中,这是为什么春天大气臭氧层的破坏程度最为严重的一个原因。
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-07-27
大气中的臭氧含量仅一亿分之一,但在离地面20至30公里的平流层中,存在着臭氧层,其中臭氧的含量占这一高度空气总量的十万分之一。臭氧层的臭氧含量虽然极其微少,却具有非常强烈的吸收紫外线的功能,可以吸收太阳光紫外线中对生物有害的部分(UV-B)。由于臭氧层有效地挡住了来自太阳紫外线的侵袭,才使得人类和地球上各种生命能够存在、繁衍和发展。
1985年,英国科学家观测到南极上空出现臭氧层空洞,并证实其同氟利昂(CFCs)分解产生的氯原子有直接关系。这一消息震惊了全世界。到“1994年,南极上空的臭氧层破坏面积已达2400万平方公里,北半球上空的臭氧层比以往任何时候都薄,欧洲和北美上空的臭氧层平均减少了10%-15%,西伯利亚上空甚至减少了35%。科学家警告说,地球上臭氧层被破坏的程度远比一般人想象的要严重得多。
氟利昂等消耗臭氧物质是臭氧层破坏的元凶,氟利昂是本世纪20年代合成的,其化学性质稳定,不具有可燃性和毒性,被当作制冷剂、发泡剂和清洗剂,广泛用于家用电器、泡沫塑料、日用化学品、汽车、消防器材等领域。80年代后期,氟利昂的生产达到了高峰,产量达到了144万吨。在对氟利昂实行控制之前,全世界向大气中排放的氟利昂已达到了2000万吨。由于它们在大气中的平均寿命达数百年,所以排放的大部分仍留在大气层中,其中大部分仍然停留在对流层,一小部分升入平流层。在对流层相当稳定的氟利昂,在上升进入平流层后,在一定的气象条件下,会在强烈紫外线的作用下被分解,分解释放出的氯原子同臭氧会发生连锁反应,不断破坏臭氧分子。科学家估计一个氯原子可以破坏数万个臭氧分子。

控制臭氧层破坏的途径和政策
在现代经济中,氟利昂等物质应用非常广泛,要全面淘汰,必须首先找到氟利昂等的替代物质和替代技术。在特殊情况下需要使用,也应努力回收,尽可能重新利用。目前,世界上一些氟利昂的主要生产厂家参与开发研究了替代氟利昂的含氟替代物(含氢氯氟烃HCFC和含氢氟烷烃HCF等)及其合成方法,有可能用作发泡剂、制冷剂和清洗溶剂等,但这类替代物也损害臭氧层或产生温室效应。同时,也在开发研究非氟利昂类型的替代物质和方法,如水清洗技术、氨制冷技术等。
为了推动氟利昂替代物质和技术的开发和使用,逐步淘汰消耗臭氧层物质,许多国家采取了一系列政策措施,一类是传统的环境管制措施,如禁用、限制、配额和技术标准,井对违反规定实施严厉处罚。欧盟国家和一些经济转轨国家广泛采用了这类措施。一类是经济手段,如征收税费,资助替代物质和技术开发等。美国对生产和使用消耗臭氧层物质实行了征税和可交易许可证等措施。另外,许多国家的政府、企业和民间团体还发起了自愿行动,采用各种环境标志,鼓励生产者和消费者生产和使用不带有消耗臭氧层物质的材料和产品,其中绿色冰箱标志得到了非常广泛的应用。
1985年,在联合国环境规划署的推动下,制定了保护臭氧层的《维也纳公约》。1987年,联合国环境规划署组织制定了《关于消耗臭氧层物质的蒙特利尔议定书》,对8种破坏臭氧层的物质(简称受控物质)提出了削减使用的时间要求。这项议定书得到了163个国家的批准。1990年、1992年和1995年,在伦敦、哥本哈根、维也纳召开的议定书缔约国会议上,对议定书又分别作了3次修改,扩大了受控物质的范围,现包括氟利昂(也称氟氯化碳CFC)、哈伦(CFCB)、四氯化碳(CCL4)、甲基氯仿(CH3CCl3)、氟氯烃(HCFC)和甲基溴(CH3Br)等,并提前了停止使用的时间。根据修改后的议定书的规定,发达国家到1994年1月停止使用哈伦,1996年1月停止使用氟利昂、四氯化碳、甲基氯仿;发展中国家到2010年全部停止使用氟利昂、哈伦、四氯化碳、甲基氯仿。中国于1992年加入了《蒙特利尔议定书》。

为了实施议定书的规定,1990年6月在伦敦召开的议定书缔约国第二次会议上,决定设立多边基金,对发展中国家淘汰有关物质提供资金援助和技术支持。1991年建立了临时多边基金,1994州年转为正式多边基金。到1995年底,多边基金共集资4.5亿美元,在发展中国家共安排了1100多个项目。
到1995年,经济发达国家已经停止使用大部分受控物质,但经济转轨国家没有按议定书要求削减受控物质的使用量。发展中国家按规定到2010年停止使用,受控物质使用量目前仍处于增长阶段。中国由于经济持续高速增长,家用电器、泡沫塑料、日用化学品、汽车、消防器材等产品都大幅度增长,受控物质使用量比1986年增长了一倍以上,成为世界上使用受控物质最多的国家之一。
从各项国际环境条约执行情况而言,这项议定书执行的是最好的。目前,向大气层排放的消耗臭氧屋物质已经逐年减少,从1994年起,对流层中消耗臭氧层物质浓度开始下降。预计到2000年,平流层中消耗臭氧层物质的浓度将达到最大限度,然后开始下降。但是,由于氟利昂相当稳定,可以存在50至100年,即使议定书完全得到履行,臭氧层的耗损也只能在2050年以后才有可能完全复原。另据1998年6月世界气象组织发表的研究报告和联合国环境规划署作出的预测,大约再过20年,人类才能看到臭氧层恢复的最初迹象,只有到21世纪中期臭氧层浓度才能达到本世纪60年代的水平。本回答被网友采纳
第2个回答  2010-07-29
臭氧层是指大气层的平流层中臭氧浓度相对较高的部分,主要作用是吸收短波紫外线。 臭氧层密度不是很高,如果它被压缩到对流层的密度,它会只有几毫米厚了。
大气层的臭氧主要以紫外线打击双原子的氧气,把它分为两个原子,然后每个原子和没有分裂的O2合并成臭氧。臭氧分子不稳定,紫外线照射之后又分为氧气分子O2和氧原子,形成一个继续的过程臭氧氧气循环,如此产生臭氧层。
臭氧层在氯原子,氟原子和溴原子附近会被毁坏。这些元素含在很稳定的氟氯烃(CF2Cl2,如氟里昂,和一种很常用的汽油添加剂)中。这些气体分子升到统温层,在紫外线照射之后,分解成各种单元素气体,破坏臭氧。这些气体比空气重,最终会降落到地球表面,和有机物质反应之后被吸收。但是在统温层已经破坏了很多臭氧。氯气破坏性最大,可以破坏它十万倍的臭氧。

1973年,美国化学家马里奥·莫利纳首次提出氟里昂对臭氧层有影响。氟里昂是一种氟氯烃,在冰箱和空调器中已经做了20多年的制冷剂。但是当时没有学者测试臭氧层厚度,也没有多少臭氧层研究,各国政府没有在意。

臭氧层空洞是在做南极研究时逐步发现。这些研究在地面和空中一起测量,由各国合作测量。最著名的是1987年代表19个组织和四个国家,在智利的蓬塔阿雷纳斯,进行的一项大规模研究,即机载南极臭氧实验。这项实验表明1987年臭氧洞大小达到历史最大,引起科学界和政界的注意。

同时持氟里昂破臭氧层观点的学者认为,南极上空之所以会出现臭氧层空洞是因为当地的极度寒冷所至。他们认为云层中粒子无论属何性质,由什么构成,当其表面温度低于-73摄氏度时,任何形式存在的氯转都会发生转变为活性氯的化学反应。当南极洲处于暖季(11月~3月)时,南极上空臭氧层中的氯化合物只受到太阳紫外线辐射的影响,分解缓慢。但当进入酷寒的冬季(4~10月),其气温可达-88.3摄氏度,云层中冰冷的粒子此时便成了释放活性氯的化学反应的催化剂,这就更大破坏了南极上空臭氧,因此出现臭氧层空洞。

大气的臭氧层对人体是有益的因为它能什么
大气的臭氧层对人体是有益的,因为它能吸收部分紫外线。臭氧层是大气层的平流层中臭氧浓度高的层次。浓度最大的部分位于20—25公里的高度处。若把臭氧层的臭氧校订到标准情况,则其厚度平均仅为3毫米左右。臭氧含量随纬度、季节和天气等变化而不同。紫外辐射在高空被臭氧吸收,对大气有增温作用,同时...

什么是臭氧层?
臭氧层中的臭氧主要是太阳紫外线制造出来的。太阳光线中的紫外线分为长波和短波两种,当大气中的氧气分子受到短波紫外线照射时,氧分子会分解成原子状态。氧原子(O)的不稳定性极强,当它再与氧分子反应时,就形成了臭氧,在地球大气层中每年大约会形成500亿吨臭氧。

什么是臭氧层
臭氧层有什么作用?

臭氧层作用
臭氧层在大气中发挥着多重关键作用。首先,它扮演着天然的保护者,通过吸收太阳光中的紫外线,特别是波长小于306.3纳米的UV-B和全部UV-C,为地球上的生命提供防护。只有UV-A和少量UV-B能到达地面,而长波紫外线对生物的伤害较小。臭氧层就像一把保护伞,维护着生物的生存繁衍。其次,臭氧层具有加热...

臭氧层由什么组成,臭氧层被破坏会释放什么气体
表面15-25公里的高空,因受太阳紫外线照射的缘故,形成了包围在地球外围空间的臭氧层,这臭氧层正是人类赖以生存的保护伞。这就是大多数人对臭氧的全部认识。人类真正认识臭氧还是在150多年以前,由德国化学家先贝因(Schanbein)博士首次提出在水电解及火花放电中产生的臭味,同在自然界闪电后产生的气味相同,先贝因博士...

臭氧层的成因 解决办法 目前的进展
据美国字航局观测的资料表明,自1969年以来,全球除赤道以外,所有地区臭氧层中臭氧的含量减少了3%~5%,全球臭氧层都已受到损害。1985年英国科学家首先发现南极臭氧层己出现空洞。人们对南极臭氧层的考察证实,南极上空周期性地出现臭氧层空洞,南极中心地区上空臭氧含量比正常含量减少了65%,南极边缘地区...

臭氧层的作用是什么?
1. 保护作用:臭氧层能够吸收太阳光中波长306.3纳米以下的紫外线,从而保护地球上的生物免受短波紫外线的伤害。长波紫外线UV-A和少量的中波紫外线UV-B能够穿透并到达地面,而这些长波紫外线对生物细胞的伤害相对较轻。2. 加热作用:臭氧层吸收太阳光中的紫外线,并将其转化为热能,从而加热大气。在...

通常所说的臭氧层是存在于大气圈的哪一层
臭氧层是大气层的平流层中臭氧浓度高的层次。臭氧层作用 1、其一为保护作用,臭氧层能够吸收太阳光中的波长306.3nm以下的紫外线,主要是一部分UV—B(波长290~300nm)和全部的UV—C(波长<290nm=,保护地球上的人类和动植物免遭短波紫外线的伤害。2、其二为加热作用,臭氧吸收太阳光中的紫外线并将...

臭氧层在大气的哪一层
臭氧层是大气层的平流层中臭氧浓度高的层次。浓度最大的部分位于20—25公里的高度处。若把臭氧层的臭氧校订到标准情况,则其厚度平均仅为3毫米左右。臭氧含量随纬度、季节和天气等变化而不同。紫外辐射在高空被臭氧吸收,对大气有增温作用,同时保护了地球上的生物免受远紫外辐射的伤害,透过的少量紫外...

臭氧层为什么被称为地球的保护伞
8. 保护臭氧层的资料表明,臭氧层已经遭受了严重的破坏。南极上空的臭氧层空洞面积逐年扩大,北极上空的臭氧层也出现了变薄的情况。科学家普遍认为,臭氧层被破坏直接导致地面紫外线辐射增强,使皮肤癌和白内障患者增加。因此,保护臭氧层已经成为环保领域内的一个重要课题。9. 我国政府非常重视臭氧层的保护...

相似回答