高中数学排列组合

如题所述

第1个回答  2017-07-27
10/81 3/8追答

追问

我想要的是P(B丨A)的详细思路及过程

追答

P(A)=C(4,6)C(2,4)C(2,2)/3的六次方
P(B)=C(2,4)/2的四次方

第2个回答  2017-07-28
哪里有除以5?那个^5是5次方的意思。

听着:
100元存一年之后是多少钱?100+100x10%吧?提取公因式就是100x(1+10%)=100x1.1
存两年之后呢?就是一年之后的钱100x1.1+100x1.1x10%咯?照样提取公因式,就是100x1.1x(1+10%)=100x1.1x1.1
以此类推,三年之后就是100x1.1x1.1x1.1,四年之后就是100x1.1x1.1x1.1x1.1,总之多少年之后就乘以多少个1.1.
那么五年之后当然就是乘以5个1.1,5个1.1就是1.1的5次方,即是:100x1.1^5。

懂了没有?
第3个回答  2017-07-27
P(A):二十四分之一追问

错了

高中数学的排列组合的定义
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。

高中数学排列组合公式有哪些?
高中数 (参考 ,文档)学中常见的排列组合公式有:1. 排列的计算公式: - 基本排列公式:$A_n^n=n!$ - 从$n$个不同元素中取$r$个元素进行排列的情况数:$A_n^r=\\\\frac{n!}{(n-r)!}$2. 组合的计算公式: - 基本组合公式:$C_n^0=C_n^n=1$ - 从$n$个不同元素中取...

高中数学排列组合公式
排列a与组合c计算方法计算方法如下排列A(n,m)=n×(n-1).(n-m+1)=n!\/(n-m)!(n为下标,m为上标,以下同)组合C(n,m)=P(n,m)\/P(m,m)=n!\/m!(n-m)!;例如A(4,2)=4!\/2!=4*3=12C(4,2)=4!\/(2!*2!)=4*3\/(2*1)=6排列组合定义从n个不同元素中,任...

高中数学排列组合,谢谢!
排列组合是高中数学中的重要部分,涉及到从n个不同元素中取出m个元素进行排列或组合的问题。排列是从n个不同元素中取出m个元素按一定的顺序排成一列,它的数目通常用符号P或P表示。组合是从n个不同元素中取出m个元素组成一组,不考虑顺序,它的数目通常用符号C或C表示。解释:1. 排列的概念及计算...

高中数学排列组合这种式子怎么计算?
高中数学的排列组合可以使用不同的方法计算,以下是几种常见的方法:1. 排列计算公式:对于给定的n个元素中取出m个元素的排列数,可以使用排列计算公式: n P m = n! \/ (n - m)! 其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1,0! = 1。2. 组合计算...

如何求解高中数学题目中的排列组合问题?
在高中数学中,排列与组合是一个非常重要的概念,它们在各种问题中都有广泛的应用。下面我将介绍一些解决排列和组合问题的基本方法。1. 排列 排列是从n个不同元素中取出m(m≤n)个不同元素进行排列的方法数,通常用P(n,m)表示。公式:P(n,m)=n!\/(n-m)!例如,从A、B、C、D四个字母中取出3...

一共有几种排列组合?
共有5种组合,用高中数学解是C[5,4]=5。用小学数学解是5个数分成2组,第一组有4个数,第二组有1个数,也就是说当第二组的1个数确定后,第一组数随着确定下来。由于第二组数共有5种组合,所以第一组数也有5种组合。例如12345五个数,四个为1组。第二组为1时候,第一组就有2345。第二组...

如何计算高中数学中的排列组合
高中数学中的排列组合是组合数学的一个分支,它涉及的对象是无序的集合。在解决排列组合问题时,通常需要根据问题的具体情况选择合适的计数原理——排列(Permutation)或组合(Combination)。以下是排列和组合的基本概念:1. **排列(Permutation)**:排列是指从n个不同元素中取出m(m≤n)个元素,按照...

怎么解决数学排列组合题?
高中数学排列组合秒杀技巧如下:1、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。2、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。3、定序问题缩倍法:在排列问题中限制...

高中数学排列组合常用解题方法
5、处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。6、在解决排列组合综合问题时...

相似回答
大家正在搜