矩阵可逆的必要条件是什么

如题所述

第1个回答  2022-11-15

矩阵可逆的充分必要条件:AB=E;A为满秩矩阵(即r(A)=n);A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。

A等价于n阶单位矩阵;A可表示成初等矩阵的乘积;齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。



扩展资料:

将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。

旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。

矩阵可逆的必要条件是什么
矩阵可逆的充分必要条件:AB=E;A为满秩矩阵(即r(A)=n);A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。A等价于n阶单位矩阵;A可表示成初等矩阵的乘积;齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无...

矩阵可逆的充要条件是什么?
因为矩阵的行列式等于所有特征值的乘积,而矩阵可逆的充要条件是行列式不等于0,所以矩阵可逆的充要条件是所有特征值都不等于0。可逆矩阵的特征值一定不为0 证明:(反证法)设A可逆,λ=0是A的特征值,x是对应的特征向量 则Ax=0x=O 根据克拉默法则,Ax=0只有零解,而x≠O,因此矛盾 即A的特征值...

请问矩阵可逆的充要条件是什么?
行列式非0 列向量线性无关 这两个条件等价,且一个成立就可以得到矩阵线性无关

矩阵可逆的充分必要条件
矩阵可逆的充分必要条件:A非奇异、|A|≠0、A可表示成初等矩阵的乘积、A等价于n阶单位矩阵、r(A)=n、A的列(行)向量权组线性无关等。

矩阵可逆有哪些充要条件?
可逆矩阵的充要条件介绍如下:A可逆的充要条件:1、|A|不等于0。2、r(A)=n。3、A的列(行)向量组线性无关。4、A的特征值中没有0。5、A可以分解为若干初等矩阵的乘积。矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,...

矩阵可逆的充分必要条件是什么?
则秩等于n,所以矩阵的行列式不等于0,矩阵可逆。计算过程:n×n的实对称矩阵A如果满足对所有非零向量 ,对应的二次型 若 ,就称A为正定矩阵。若 则A是一个负定矩阵,若 ,则n阶矩阵(方正)的行向量或列向量线性无关,则秩等于n,所以矩阵的行列式不等于0,矩阵可逆。

矩阵可逆的条件
矩阵可逆的五个充要条件包括:1、行列式不等于0。如果一个矩阵的行列式为0,则该矩阵不可逆。2、矩阵的秩等于其行数或列数。如果矩阵的秩小于其行数或列数,则该矩阵不可逆。3、矩阵的列向量(或行向量)线性无关。如果矩阵的列向量(或行向量)线性相关,则该矩阵不可逆。4、矩阵的列向量(或行...

可逆的充要条件
若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。从几个充要条件中可知,矩阵是否可逆与向量的相关性、线性方程组的解的情况以及特征值均可建立起联系。|A|≠0,充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题p,则称p是q的充分必要条件,...

矩阵可逆的充要条件是什么?
1、因为A和对角矩阵B相似,所以-1,2,y就是矩阵A的特征值 知λ=-2是A的特征值,因此必有y=-2。再由λ=2是A的特征值,知|2E-A|=4[22-2(x+1)+(x-2)]=0,得x=0。2、由 对λ=-1,由(-E-A)x=0得特征向量α1=(0,-2,1)T,对λ=2,由(2E-A)x=0得特征向量α2=(0...

矩阵A可逆的充分必要条件是
充分性:A=0,则A'=0(由转置的定义),则A'A=0(由矩阵乘法的定义)。必要性:当A'A=0时,我们取任意的非零向量x,就会有x'(A'A)x=0。矩阵的乘法具有结合律上式就变成了(x'A')(Ax)=0由转置的脱衣原则,上式就变成了(Ax)'(Ax)=0。n*n矩阵与n*1阶矩阵相乘.因此Ax是一个n维列向量...

相似回答
大家正在搜