不定积分的常用公式有哪些

如题所述

不定积分公式为:

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

扩展资料:

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。

要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。

但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-02-24
1)∫0dx=c 不定积分的定义
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本积分公式
14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;本回答被网友采纳
第2个回答  2012-01-05
1)∫0dx=c 不定积分的定义
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本积分公式
14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;

不定积分的计算方式有哪些?
求积分的公式如下:1、∫0dx=c不定积分的定义 2、∫x^udx=(x^(u+1))\/(u+1)+c 3、∫1\/xdx=ln|x|+c 4、∫a^xdx=(a^x)\/lna+c 5、∫e^xdx=e^x+c 6、∫sinxdx=-cosx+c 7、∫cosxdx=sinx+c 8、∫1\/(cosx)^2dx=tanx+c 9、∫1\/(sinx)^2dx=-cotx+c 10、∫1\/√(...

不定积分常用公式
常用不定积分公式如下:1、∫0dx=c。2、∫x^udx=(x^(u+1))\/(u+1)+c。3、∫1\/xdx=ln|x|+c。4、∫a^xdx=(a^x)\/lna+c。5、∫e^xdx=e^x+c。6、∫sinxdx=-cosx+c。不定积分其他情况简介:许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分...

不定积分的计算方法是什么?
1、公式,∫x^ndx=x^n+1\/n+1+Cn≠-1。∫sinxdx=-cosx+C。∫cosxdx=sinx+C。∫expxdx=expx+C。∫logxdx=xlogx-x+C。∫secxdx=secxtanx+C。∫cscxdx=-cscxcotx+C。∫sec^2xdx=tanx+C。∫csc^2xdx=-cotx+C。2、基本初等函数的不定积分是微积分学的基础。这些函数包括常数函数、幂函...

不定积分的公式是什么?
不定积分的公式主要有以下几种:1. 常数项公式:∫kdx = kx + C (其中k为常数,C为积分常数)2. 变量代换公式:若u = g(x),则有:∫f(g(x))g'(x)dx = ∫f(u)du (其中u是g(x)的函数)3. 代数和函数积分公式:常用的如下所示:∫x^n dx = (1\/(n+1))x^(n+...

不定积分的公式都有哪些呢?
不定积分的公式:1. ∫ a dx = ax + C,其中a为常数。2. ∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1。3. ∫ 1\/x dx = ln|x| + C。4. ∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1。5. ∫ e^x dx = e^x + C。6....

不定积分的公式有哪些 最好比较全
1\/2a)ln|(a+x)\/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 基本积分公式 14)∫1\/(a^2+x^2)dx=1\/a*arctan(x\/a)+c 15)∫1\/√(a^2-x^2)dx=(1\/a)*arcsin(x\/a)+c 16)∫sec^2 x dx=tanx+c;17)∫shx dx=chx+c;18)∫chx dx=shx+c;19)∫thx dx=ln(chx)+c;...

不定积分基本公式
不定积分基本公式:∫ a dx = ax + C,a和C都是常数 ∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1\/x dx = ln|x| + C ∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1 ∫ e^x dx = e^x + C ∫ cosx dx = sinx + C...

不定积分基本公式
1)∫0dx=c 不定积分的定义 2)∫x^udx=(x^(u+1))\/(u+1)+c 3)∫1\/xdx=ln|x|+c 4)∫a^xdx=(a^x)\/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1\/(cosx)^2dx=tanx+c 9)∫1\/(sinx)^2dx=-cotx+c 10)∫1\/√(1-x^2) dx=arc...

不定积分的公式是什么?
不定积分的公式如下:∫ a dx = ax + C,a和C都是常数;∫ x^a dx = [x^(a + 1)]\/(a + 1) + C,其中a为常数且 a ≠ -1;∫ 1\/x dx = ln|x| + C;∫ a^x dx = (1\/lna)a^x + C,其中a > 0 且 a ≠ 1;∫ e^x dx = e^x + C;∫ cosx dx = sinx...

不定积分有哪些运算法则?
1、积分公式法:直接利用积分公式求出不定积分。2、第一类换元法(即凑微分法):通过凑微分,最后依托于某个积分公式,进而求得原不定积分。积分常用法则公式:1、∫0dx=c 不定积分的定义。2、∫x^udx=(x^(u+1))\/(u+1)+c。3、∫1\/xdx=ln|x|+c。4、∫a^xdx=(a^x)\/lna+c。5、...

相似回答