证明:
A的行列式不等于0,而|E|=1,|P|,|Q|不等于0,所以|A|不等于0,A可逆,
A可逆充要条件是|A|不等于0.这里P,Q都是可逆的,所以A=P-1Q-1,A-1=QP。
因为A的行列式等于它的所有特征值的乘积。
所以A可逆|A|≠0A的特征值都不等于0。
(当矩阵行列式不为零,就可以推出伴随阵来计算矩阵的解析式,既然都求出你阵逆阵了,原矩阵当然可逆。反过来,当原矩阵可逆时,A乘A的逆等于单位阵,两边取行列式,便得到行列式一定不为零。)
设M是n阶方阵,I是单位矩阵,如果存在一个数λ使得M-λI是奇异矩阵(即不可逆矩阵,亦即行列式为零),那么λ称为M的特征值。
扩展资料
矩阵可逆的必要条件:
|A|=0 的充分必要条件
<=> A不可逆 (又称奇异)
<=> A的列(行)向量组线性相关
<=> R(A)<n
<=> AX=0 有非零解
<=> A有特征值0。
<=> A不能表示成初等矩阵的乘积
<=> A的等价标准形不是单位矩阵|A|≠0的充分必要条件
<=> A可逆 (又非奇异)
<=> 存在同阶方阵B满足 AB = E (或 BA=E)
<=> R(A)=n<=> R(A*)=n
<=> |A*|≠0<=> A的列(行)向量组线性无关。
<=> AX=0 仅有零解<=> AX=b 有唯一解。
<=> 任一n维向量都可由A的列向量组唯一线性表示。
<=> A可表示成初等矩阵的乘积。
<=> A的等价标准形是单位矩阵。
<=> A的行最简形是单位矩阵。
<=> A的特征值都不等于0。
<=> A^TA是正定矩阵。
怎么证明一个矩阵可逆
要证明一个矩阵A可逆,可以使用的方法:计算矩阵的行列式、寻找逆矩阵、使用初等变换、利用特征值。对于某些矩阵,可能需要使用多种方法才能证明其可逆性。同时,对于一些特殊的矩阵,具体方法需要根据矩阵的特点和应用场景来选择。1、计算矩阵的行列式:如果矩阵的行列式不为零,则矩阵可逆。2、寻找逆矩阵:...
如何判断矩阵A是否可逆?
1. 行列式的值: 如果矩阵A的行列式(det(A))不等于零,那么矩阵A是可逆的。行列式为零的矩阵是奇异的,不可逆。2. 全秩矩阵: 如果矩阵A是一个方阵,并且其秩(rank)等于矩阵的阶数(行数或列数,因为它是方阵),则矩阵A是满秩的,通常也是可逆的。满秩意味着矩阵的所有行和列都是线性无...
如何证明矩阵A可逆?
证明:A的行列式不等于0,而|E|=1,|P|,|Q|不等于0,所以|A|不等于0,A可逆,A可逆充要条件是|A|不等于0.这里P,Q都是可逆的,所以A=P-1Q-1,A-1=QP。因为A的行列式等于它的所有特征值的乘积。所以A可逆|A|≠0A的特征值都不等于0。(当矩阵行列式不为零,就可以推出伴随阵来计算矩...
如何快速判断一个矩阵是否可逆?
1.行列式法:对于一个n阶方阵A,如果它的行列式det(A)不等于0,那么矩阵A就是可逆的。因为行列式值不为零是矩阵可逆的必要条件。2.秩法:对于一个n阶方阵A,如果它的秩r(A)等于n,那么矩阵A就是可逆的。因为矩阵的秩等于其列向量组的最大线性无关组的向量个数,如果这个数量等于矩阵的阶数,那...
证明可逆矩阵的方法
方法一:行列式法 行列式法是证明矩阵可逆的一种常用方法。如果一个矩阵的行列式不为零,那么这个矩阵就是可逆矩阵。具体证明方法如下:假设A是一个n阶矩阵,如果它的行列式不为零,即det(A)≠0,那么我们可以通过求解A的伴随矩阵来证明A是可逆矩阵。伴随矩阵的定义如下:A的伴随矩阵记作adj(A),它是...
矩阵A可逆需要满足什么条件
1、|A|不等于0。2、r(A)=n。3、A的列(行)向量组线性无关。4、A的特征值中没有0。5、A可以分解为若干初等矩阵的乘积。矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
判断矩阵是否可逆的四种方法
可逆矩阵在线性代数和应用领域中具有重要的作用。怎么判断矩阵可逆 1、行列式判别法:对于一个n阶方阵A,计算其行列式det(A),如果行列式的值不等于零det(A) ≠ 0,则矩阵A可逆;如果行列式的值等于零(det(A) = 0),则矩阵A不可逆。2、逆矩阵判别法:对于一个n阶方阵A,计算其逆矩阵A⁻...
怎样证明一个矩阵可逆呢?
证明一个矩阵可逆的方法有5种;(1)看这个矩阵的行列式值是否为0,若不为0,则可逆;(2)看这个矩阵的秩是否为n,若为n,则矩阵可逆;(3)定义法:若存在一个矩阵B,使矩阵A使得AB=BA=E,则矩阵A可逆,且B是A的逆矩阵;(4)对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,...
如何判断一个矩阵是否可逆矩阵呢?
1、伴随矩阵法。A的逆矩阵=A的伴随矩阵\/A的行列式。2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。矩阵可逆的充要条件是系数行列式不等于零。矩阵求逆...
证明矩阵可逆的方法
1、可逆矩阵一定是方阵。2、(唯一性)如果矩阵A是可逆的,其逆矩阵是唯一的。3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC...