已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求

已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;(2)若数列{cn}为等比数列,且bn+1≥bn,求证:数列{an}为等比数列.

无其他回答

设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得an+k2=an...
2于是当n≥9时,an-3,an-1,an+1,an+3成等比数列,从而an-3an+3=an-1an+1,故由(*)式知an2=an-1an+1,即an+1an=anan?1.当n≥9时,设q=anan?1,当2≤m≤9时,m+6≥8,从而由(*)式知am+62=amam+12,故am+72=am+1am+13,从而am+72am+62=am+1am+13amam+12...

已知数列{an}的每一项都是正数,满足a1=2,且an+12-anan+1-2an2=0...
(1)an+12-anan+1-2an2=0得(an+1-2an)(an+1+an)=0,由于数列{an}的每一项都是正数,∴an+1=2an,∴an=2n.设bn=b1+(n-1)d,由已知有b1+d=3,5b1+5×42d=25,解得b1=1,d=2,∴bn=2n-1.(2)由(1)得Tn=n2,∴1Tn=1n2,当n=1时,1T1=1<2.当n≥2...

...anan+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{an}的通项公
(1)∵an>0,∴由an+12=2an2+anan+1得:(an+1an)2?an+1an?2=0,∴(an+1an+1)(an+1an?2)=0,∴an+1an=2;∴数列{an}是以2为公比的等比数列;∴由a2+a4=2a3+4得:2a1+8a1=8a1+4,解得a1=2,∴an=2n.(2)bn=2n?1(2n?1)(2n+1?1)=12(12n?1?12n+1?1)...

...+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{an} 的通
(1)因为an+12=2an2+anan+1,即(an+1+an)(2an-an+1)=0,又an>0,所以有2an-an+1=0,所以2an=an+1,所以数列{an}是公比为2的等比数列.由a2+a4=2a3+4得2a1+8a1=8a1+4,解得a1=2,故an=2n(n∈N*)(2)构造函数f(x)=ln(1+x)-x(x≥0),则f′(x)=?x1...

己知各项均为正数的数列{an}满足:a1=3,且anan+12-2(an2-1)an+1-an...
1an+1=2(an2?1)an=2(an?1an)=2bn,b1=a1?1a1=83,∴数列{bn}是公比为2,首项为83的等比数列,其通项公式为bn=2n+23.(2)由(1)有Sn+Tn=(a1?1a1)2+(a2?1a2)2+…+(an?1an)2+2n=(233)2+(243)2+…(2n+23)2+2n=6427(4n?1)+2n,n∈N*,为使Sn+Tn=...

...+1,且a2+a4=2a3+4,其中n∈N*.(Ⅰ)求数列{an}的通项
因为an+12=2an2+anan+1,即(an+1+an)(2an-an+1)=0,又an>0,所以有2an-an+1=0,所以2an=an+1,所以数列{an}是公比为2的等比数列.由a2+a4=2a3+4得2a1+8a1=8a1+4,解得a1=2,故an=2n(n∈N*)1、错位相减法:源于等比数列前n项和公式的推导,对于形如的数列,其中为...

...各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a
a(n+1)2+anan+1 =2an2+2anan+1 a(n+1)^2-an^2=an(an+an+1)a(n+1)=2an {an}为等比数列 公比为2 a2+a4=2a3+4 a2+4a2=2*2a2+4 a2=4 a1=2 an=2^n

...且4an-2Sn=1,数列{bn}满足bn=2log12an,n∈N*.(1)求数列{an}的通项...
an=2an-1.∴anan?1=2(n≥2).∴数列{an}是以a1=12为首项,2为公比的等比数列.∴an=2n-2.…(4分)从而bn=4-2n,其前n项和Tn=-n2+3n…(6分)(2)∵{an}为等比数列、{bn}为等差数列,bnan=4?2n2n?2,∴Un=212+01+?22+…+6?2n2n?3+4?2n2n?2…③12Un=21+02+?...

...=1,Sn为数列{an}的前n项和.(Ⅰ)若数列{an},{an2}都是等差数列,求...
2Sn?1=an?12+an?1②由①-②得:an+an?1=a2n?an?12,又an>0∴an?an?1=1 (n≥2,n∈N*),…10分又a1=1,∴an=n;∴1a1a2+1a2a3+…+1anan+1=11×2+12×3+…+1n(n+1)=(1-12)+(12?13)+…+(1n?1n+1)=1-1n+1<1.…13分.

已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项...
(1)由bn=an-1,得an=bn+1,代入2an=1+anan+1,得2(bn+1)=1+(bn+1)(bn+1+1),∴bnbn+1+bn+1-bn=0,从而有1bn+1?1bn=1,∵b1=a1-1=2-1=1,∴{1bn}是首项为1,公差为1的等差数列,∴1bn=n,即bn=1n.…(5分)(2)∵Sn=1+12+…+1n,∴Tn=S2n?Sn...

相似回答