函数及其图像
一、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)
2、坐标轴上的点的特征
在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于
三、函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数的三种表示法(1)解析法(2)列表法(3)图像法
3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线
4、自变量取值范围
四、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像:是一条直线
3、正比例函数的性质,,一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
4、一次函数的性质,,一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
5、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
6、 设两条直线分别为,: :
若且。 若
7、平移:上加下减,左加右减。
8、较点坐标求法:联立方程组
五、反比例函数
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成 或xy=k的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像是双曲线。
3、反比例函数的性质
(1)当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。
(2)当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。
(3) 图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
(4)图像既是轴对称图形又是中心对称图形
(5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|
4、反比例函数解析式的确定
只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
六、二次函数
1、二次函数的概念:一般地,如果,那么y叫做x 的二次函数。
2、二次函数的图像是一条抛物线。
3、二次函数的性质:
(1)a>0抛物线开口向上,对称轴是x=,顶点坐标是(,);在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大;抛物线有最低点,当x=时,y有最小值,
(2) a<0抛物线开口向下,对称轴是x=,顶点坐标是(,);在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,;
抛物线有最高点,当x=时,y有最大值,
4、.二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)两根式:
5、抛物线中,的作用:
表示开口方向:>0时,抛物线开口向上,,, <0时,抛物线开口向下
与对称轴有关:对称轴为x=,a与b左同右异
表示抛物线与y轴的交点坐标:(0,)
6、二次函数与一元二次方程的关系
一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。
因此一元二次方程中的,在二次函数中表示图像与x轴是否有交点。
当>0时,图像与x轴有两个交点;
当=0时,图像与x轴有一个交点;
当<0时,图像与x轴没有交点。
7、求抛物线的顶点、对称轴的方法
(1)公式法:顶点是,对称轴是直线.
(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.
8、平移:可以由平移得到。上加下减,左加右减。
温馨提示:内容为网友见解,仅供参考
初中数学函数知识点总结归纳
正比例函数及性质 1、一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。注:正比例函数一般形式y=kx,k不为零 (1)k不为零;(2)x指数为1;(3)b取零。2、当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;3、当k<0时,直线y...
初中函数知识点归纳有哪些
初中函数知识点归纳 一、函数 (1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。(2)本质:一一对应关系或多一对应关系。有序实数对 平面直角坐标系上的点 (3)表示方法:解析法、列表法、图象法。(4...
初中函数入门知识点总结
函数是初中数学的重要知识点,初中常见的函数有一次函数、二次函数等,接下来分享与函数有关的知识点。函数的相关概念 1.函数:在某一变化过程中,如果有两个变量x,y,并且对于x在某一范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说y是x的函数,x叫做自变量。2.函数自变量的取值...
一次函数、反比例函数、二次函数…初中所有函数知识点都在这里了
反比例函数表达式为y=k\/x(k≠0),函数图像为双曲线。反比例函数的特点是,当x增大时,y减小,反之亦然。解题中,要注意利用图像的对称性,以及k值的正负来判断函数的增减趋势。二次函数表达式为y=ax^2+bx+c(a≠0),图像为抛物线。二次函数有三个关键点:顶点、对称轴和开口方向。顶点决定了...
初中函数入门的基础知识
函数是初中数学的重要知识点,初中常见的函数有一次函数、二次函数等,接下来分享与函数有关的知识点。函数的定义 给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个...
初中数学函数知识点归纳
函数在初中数学中分值占比较大,一次函数、二次函数和反比例函数都会考查,所以我归纳了有关初中数学函数的知识点,赶快记起来吧!一次函数知识归纳 (1)一次函数 如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),...
初中数学函数知识点总结
函数是初中数学的重要知识点,接下来给大家总结初中数学函数重要知识点,一起看一下具体内容,供参考。一次函数知识点 1.一次函数 如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。2.一次...
初中数学函数知识点总结 如何学好函数
函数知识点 概念 自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,...
初中数学函数包括哪些方面
1.常量和变量 在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.2.函数 设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.3.自变量的取值范围 (1)整式:自变量取...
初中函数入门知识点
函数是我们初中数学学习的重点,接下来给大家分享一些初中函数入门的知识点,带领大家走进函数的世界。函数入门的相关概念 自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有...