已知数列{an}满足:a1=1,an+1=12an+n,n为奇数an?2n,n为偶数,(Ⅰ)求a2,a3;(Ⅱ)当n≥2时,求a2n-2与a2n的关系式,并求数列{an}中偶数项的通项公式;(Ⅲ)求数列{an}前100项中所有奇数项的和.
...n为奇数an?2n,n为偶数(1)求a2、a3、a4、a5;(2)设bn=a2n-2,_百度...
2=12a2n+1 +2n+1?2a2n?2=12(a2n?4n)+2n?1a2n?2=12a2n?1a2n?2=12,又∵b1=a2?2=?12,∴数列{bn}是等比数列,且bn=(?12)(?12)n?1=(?12)n;(3)由(2)得:a2n=bn+2=2?(12)n (n=1,2,…,50)∴S100=a2+a4+…+a100=2×50?12(1?1250)1?12...
已知数列{a n }满足: a 1 =1, a n+1 = 1 2 a n +n,n为奇数
+(2n+1)-2 a 2n -2 = 1 2 (a 2n -2×2n)+2n-1 a 2n -2 = 1 2 ,是一个与n无关的常数.所以数列{b n }是等比数列,其通项公式b n =- (1 2 )n (Ⅲ)由(II)可得a 2n =2+b n .数列{a n }前20项中所有奇数项的和S=a 1 +a 3 ...
...a1=1,an+1=12an+n,n为奇数an?2n,n为偶数,记bn=a2n,n∈N*.(1)求a...
(12)n-1=-(12)n,即bn=2-(12)n.(3)∵a2n+1=a2n-4n=bn-4n∴S2n+1=a1+a2+…+a2n+a2n+1=(a2+a4+…+a2n)+(a1+a3+a5+…+a2n+1)=(b1+b2+…+bn)+[a1+(b1-4×1)+(b2-4×2)+…+(bn-4×n)]=a1+2(b1+b2+…+bn)-4×(1+2+…+n)=1+2...
已知数列{an}满足:a1=a,an+1=12an2?an+2,其中n∈N*.(Ⅰ)是否存在实数a...
解答:(本小题满分12分)(Ⅰ)解:an+1?an=12an2?2an+2=12(an?2)2,若{an}为等差数列,则12(an?2)2为常数,即an为常数,从而公差为0,∴an=2,此时{an}为常数列,是等差数列,所以存在a=2满足题意.…(4分)(Ⅱ)证明:an+1?2=12an2?an=12an(an?2),则1an+1?2...
已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}...
解答:(Ⅰ)证明:由题意得an+1+1=2(an+1),…(3分)又a1+1=2≠0. …(4分)所以数列{an+1}是以2为首项,2为公比的等比数列. …(5分)(Ⅱ)解:由(1)知an+1=2?2n?1即an=2n?1,…(7分)故bn=(2n?1)2n∴Tn=b1+b2+b3+…+bn=1?2+3?22+5?23+…...
已知数列{an}满足a1=1,an+an?1=(12)n(n∈N*,n≥2),令Tn=a1?2+a2?22+...
2+a2?22+…+an?2n ①得2?Tn=a1?22+a2?23+…+an?2n+1 ②①+②得:3Tn=2a1+22(a1+a2)+23?(a2+a3)+…+2n?(an-1+an)+an?2n+1 =2a1+22×12+23?(12)2+…+2n?(12)n+1+an?2n+1=2+2+2+…+2+2n+1?an=2n+2n+1?an.所以3Tn-an?2n+1=2n.故答案为:2n.
已知数列{an}中,a1=1,an?an+1=(12)n(n∈N*),记T2n为{an}的前2n项的和...
an+1=(12)n∴bn+1bn=a2n+2a2n=a2n+1a2n+2a2na2n+1=12---3f所以{bn}是以b1=12为首项,公比为12的等比数列.---4f(2)解:由(1)知,bn=(12)n,当n=2k(k∈N*)时,an=a2k=bk=(12)k;---5f当n=2k-1(k∈N*)时,an=a2k?1=(12)k?1---6f即an=(12...
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{..._百度知 ...
解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2×2n-1=2n,∴an=2n-1.(II)解:由(I)可知:bn= n•2n 2 =n•2n-1.∴Sn=1×20+2×21+3×22+…+(n-1)•...
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(I)求数列{a...
解答:解:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2n.即an=2n-1(n∈N*).(II)证明:∵ ak ak+1 = 2k-1 2k+1-1 = 2k-1 2(2k- 1 2 )< 1 2 ,k=1,2,,n,∴ a1 a2 + a2 a3 ++ an an+1 ...
已知数列{an}满足:a1=1,1an+1=12an,n∈N*,{an}的前项和为Sn,则( )A...
∵数列{an}满足:a1=1,1an+1=12an,n∈N*,∴数列{an}是以1为首项,2为公比的等比数列,∴Sn=1×(1?2n)1?2=2n-1,故选:C.