不过气动元件的缺点就是定位精度差(运行过程中),噪音大。
在FLASH动画制作中,我们经常需要使用元件。 FLASH里面有很多时候需要重复使用素材,这时我们就可以把素材转换成元件,或者干脆新建元件。以方便重复使用或者再次编辑修改。也可以把元件理解为原始的素材,通常存放在元件库中。元件可以进行再次修改,但是在场景里修改元件不会修改元件本身的属性。
元件通常有三种形式: 按钮元件。
它是构成flash动画的一个片段,能独立于主动画进行播放。影片剪辑可以是主动画的一个组成部分,当播放主动画时,影片剪辑元件也会随之循环播放。
在flash影片中的影片片段,有自己的时间轴和属性。具有交互性,是用途最广、功能最多的部分。可以包含交互控制、声音以及其他影片剪辑的实例,也可以将其放置在按钮元件的时间轴中制件动画按钮。
按钮元件:用于创建动画的交互控制按钮,以相应鼠标时间(如单击、释放等)。按钮有up、over、down、hit四个不同的状态的帧,可以分别在按钮的不同状态帧上创建不同的内容,既可以是静止图形,也可以是影片剪辑,而且可以给按钮田间时间的交互动作,使按钮具有交互功能。
图形元件: 图形元件是可反复使用的图形,它可以是影片剪辑元件或场景的一个组成部分。图形元件是含一帧的静止图片,是制作动画的基本元素之一,但它不能添加交互行为和声音控制。
在flash中图形元件适用于静态图像的重复使用,或者创建与主时间轴相关联的动画。它不能提供实例名称,也不能在动作脚本中被引用。
方法1:新建一个空白元件,然后在元件编辑状态下穿件元件的内容。选择菜单“插入”—>“新建元件”或者按键盘ctrl+F8也可以新建一个元件。
方法2:将场景上的对象转换成元件。选择场景里现有元件,单击鼠标右键,选择转换为元件。
方法3:将动画转换为元件。
每个元件都有一个最大的功率极限,不管是有源器件(如放大器),还是无源器件(如电缆或滤波器)。理解功率在这些元件中如何流动有助于在设计电路与系统时处理更高的功率电平。
它能处理多大的功率这是对发射机中的大多数元件不可避免要问的一个问题,而且通常问的是无源元件,比如滤波器、耦合器和天线。但随着微波真空管(如行波管(TWT))和核心有源器件(如硅横向扩散金属氧化物半导体(LDMOS)晶体管和氮化镓(GaN)场效应晶体管(FET))的功率电平的日益增加,当安装在精心设计的放大器电路中时,它们也将受到连接器等元件甚至印刷电路板(PCB)材料的功率处理能力的限制。了解组成大功率元件或系统的不同部件的限制有助于回答这个长久以来的问题。
发射机要求功率在限制范围内。一般来说,这些限制范围由政府机构规定,例如美国联邦通信委员会(FCC)制定的通信标准。但在“不受管制”系统中,比如雷达和电子战(EW)平台中,限制主要来自于系统中的电子元件。
当电流流过电路时,部分电能将被转换成热能。处理足够大电流的电路将发热——特别是在电阻高的地方,如分立电阻。对电路或系统设定功率极限的基本思路是利用低工作温度防止任何可能损坏电路或系统中元件或材料的温升,例如印刷电路板中使用的介电材料。电流/热量流经电路时发生中断(例如松散的或虚焊连接器),也可能导致热量的不连续性或热点,进而引起损坏或可靠性问题。温度效应,包括不同材料间热膨胀系数(CTE)的不同,也可能导致高频电路和系统中发生可靠性问题。
热量总是从更高温度的区域流向较低温度的区域,这个原则可以用来将大功率电路产生的热量传离发热源,如晶体管或TWT。当然,从热源开始的散热路径应该包括由能够疏通或耗散热量的材料组成的目的地,比如金属接地层或散热器。不管怎样,任何电路或系统的热管理只有在设计周期一开始就考虑才能最佳地实现。
一般用热导率来比较用于管理射频/微波电路热量的材料性能,这个指标用每米材料每一度(以开尔文为单位)施加的功率(W/mK)来衡量。也许对任何高频电路来说这些材料最重要的一个因素是PCB叠层,这些叠层一般具有较低的热导率。比如低成本高频电路中经常使用的FR4叠层材料,它们的典型热导率只有0.25W/mK。
相反,铜(沉积在FR4上,作为地高平面或电路走线)具有355W/mK的热导率。铜具有很大的热流动容量,而FR4具有几乎可以忽略的热导率。为防止在铜传输线上产生热点,必须为从传输线到地平面、散热器或其它一些高热导率区域提供高热导率路径。更薄的PCB材料允许到地平面的路径更短,因为可以使用电镀过孔(PTH)从电路走线连接到地平面。
当然,PCB的功率处理能力是许多因素的函数,包括导体宽度、地平面间距和材料的耗散因数(损耗)。此外,材料的介电常数将确定在给定理想特征阻抗下的电路尺寸,比如50Ω,因此具有更高介电常数值的材料允许电路设计师减小其射频/微波电路的尺寸。也就是说,这些更短的金属走线意味着需要具有更高热导率的PCB介电材料来实现正确的热管理。
在给定的应用功率电平下,具有更高热导率的电路材料的温升要比更低热导率材料低。遗憾的是,FR4与许多具有低热导率的其它PCB材料没有什么不同。不过,电路的热处理能力和功率处理能力可以通过规定采用至少与FR4相比具有更高热导率的PCB材料加以改进。
例如,虽然还没到铜的热导率水平,但Rogers公司的几种PCB材料可以提供比FR4高得多的热导率。RO4350B材料的热导率是 0.62W/mK,而该公司的RO4360叠层热导率可达0.80W/mK。虽然没有显着的提高,但与FR4叠层相比确实有了两至三倍的热/功率能力提升,可实现射频/微波电路所产生热量的有效耗散。这两种材料特别适合具有内置热源(晶体管)的放大器应用,它们都具有较低的热膨胀系数(CTE)值,因此能最大限度地减少随温度发生的尺寸变化。
许多商用计算机辅助工程(CAE)软件设计包能够在给定的应用功率电平和给定的电路参数设置条件下建模经过射频/微波电路的热量流动,包括PCB的热导率。这些软件设计包包含有许多单独的程序,比如Sonnet Software公司的电磁仿真(EM)工具、Fluent公司的IcePak软件、ANSYS公司的TAS PCB软件以及Flomerics公司的Flotherm软件。它们还包含许多设计软件工具套件,如安捷伦科技(Agilent)的高级设计系统 (ADS)、Computer Simulation Technology公司(CST)的CST Microwave Studio以及AWR公司的Microwave Office。
这些软件工具甚至可以用来研究不同工作环境对射频/微波电路功率处理能力的影响,比如在飞机的低大气压力或高海拔环境下足够高功率电平下可能出现的电弧。这些程序还能通过对能量流经元件(如耦合器或滤波器)时的场分布情况建模,来提升分立射频/微波元件的功率处理能力。
当然,PCB材料并不是影响射频/微波电路或系统中热量流动的唯一因素。电缆和连接器对高频系统中功率/热量的限制也是众所周知的。在同轴组件中,连接器通常可以比它所连接的电缆处理更多的热量/功率,而不同连接器具有不同的功率额定值。例如,N型连接器的功率额定值稍高于具有更小尺寸(和更高频率范围)的SMA连接器。电缆和连接器的平均功率和峰值功率都有额定值,峰值功率等于 V2/Z,其中Z是特征阻抗,V是峰值电压。平均功率额定值的简单估算方法是将电缆组件的峰值功率额定值乘以占空比。
Astrolab公司等许多电缆供应商开发了专门的计算程序来计算他们的同轴电缆组件的功率处理能力。而Times Microwave Systems等一些公司则提供免费的可下载计算程序,这些程序可用于预测他们自己的不同类型同轴电缆的功率处理能力。
值得注意的是,这是对复杂主题的极其简单化处理。它还没有涉及材料击穿电压、PCB耗散因数(损耗因数)如何影响电路的功率处理能力、对PCB材料热膨胀系数(CTE)性能的影响以及连续波和脉冲能源之间发热效应区别等主题。
在元件、电路和系统内,还有许多复杂现象可能影响到功率处理能力,包括具有“打开”和“关闭”状态的开关等可能具有不同射频/微波功率能力的元件。除了软件程序外,可用于热分析的工具还可以提供基于红外(IR)技术的热成像功能,可以用来安全地研究元件、电路和系统中的热量累积。
霍尔元件的霍尔效应系数怎样计算的啊?
霍尔系数的公式:Bqv=Uq\/aI。霍尔系数(又称霍尔常数)RH在磁场不太强时,霍尔电势差UH与激励电流I和磁感应强度B的乘积成正比,与霍尔片的厚度δ成反比。霍尔系数计算公式为:Rh=U*d\/IB,其中U为霍尔电压,单位mV,d为霍尔元件厚度,单位为μm,I为工作电流,单位为mA,B为磁场强度,单位为T。公式就...
霍尔元器件的霍尔电压是相反的吗?
对于正负电荷,在电流方向相同,也就是粒子运动方向相反的情况下,洛仑兹力的方向是相同的。因此正负电荷的霍尔电压是相反的。假定价带顶在k=0处,靠近价带顶的电子的晶体动量和速度是相反的。这意味着在价带顶处的电子受到的洛仑兹力的方向和导带底是相反的。N型半导体的自由电子在导带底,P型半导体...
霍尔元件的霍尔电压U是什么?
U=E*L=v*B*L 设单位体积内的载流子数为n,则根据电流的定义有 I=n*q*V*s 式中S=L*d,是薄片的横截面积。消去v可得 U=(I*B)\/(n*q*d)=K*I*B\/d 其中K=1\/(n*q)称为霍尔系数 U为霍尔电压 解释:在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的...
霍尔元件的霍尔系数与什么因素有关?
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场EH。电流IS通过N型或P型霍尔元件,磁场B方向与电流IS方向垂直,且磁场方向由内向外,...
【干货】电子元器件之霍尔
霍尔元件是根据霍尔效应制成,具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长的优点。其工作原理是将霍尔电压放大后应用到直流无刷电机、测磁仪表等设备中。霍尔传感器分为线性型和开关型。线性型霍尔传感器输出模拟电压,广泛应用于位置、力、电流、磁场等物理量的测量。开关型...
什么是霍尔元件什么是霍尔元件
霍尔元件是应用霍尔效应的半导体,可以检测磁场及其变化,可在各种与磁场有关的场合中使用,一般用于电机中测定转子转速,如录像机的磁鼓,电脑中的散热风扇等。霍尔元件的优点:结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高,耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔元件的...
霍尔元件工作原理
霍尔元件是基于霍尔效应的半导体技术。霍尔效应描述的是磁场作用于载流金属导体或半导体中的带电粒子时,会在电流方向垂直的方向上产生横向电位差的现象。这一现象在1879年由美国物理学家霍尔首次观察到。在金属中,当电流通过时,施加垂直于电流的磁场会导致两侧出现UH,其基本关系可用公式UH=RHIB\/d来表示...
霍尔元件的主要参数有哪些
霍尔元件的主要参数包括霍尔系数、霍尔灵敏度、霍尔载流子的迁移率和霍尔电压等。霍尔系数,是霍尔元件的固有属性,它反映了霍尔效应的强弱,表示了霍尔电压与磁感应强度和电流强度之间的比例关系。霍尔系数的大小与霍尔元件的材料有关。霍尔灵敏度,反映了霍尔元件对磁场的敏感程度,是霍尔电压与磁感应强度的...
霍尔元件中,霍尔系数如何推导?
设:d为薄片厚度,k为霍尔系数,a为极板长度,Bqv=Uq\/a I=nqdav U=BI\/nqd=kBI\/d 所以,k=1\/nq
霍尔式信号发生器中的霍尔元件属于什么元件
霍尔式信号发生器中的霍尔元件属于半导体元件。霍尔元件是一种基于霍尔效应而制成的磁传感器件。霍尔效应是指,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,那么在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压。这一现象便是霍尔效应,而这个半导体薄片,就...