排列组合 将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的放法有

如题所述

解答:
按照要求,最后有1个盒子有两个球,另外两个盒子1个球。
∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,
然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,
∴ 共有 6*6=36种放法。
温馨提示:内容为网友见解,仅供参考
无其他回答

排列组合 将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。

四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的...
法一:从四个中选三个应该是C43而不是A43 再从三个盒子中选一个放剩下的一个球C31 C43C31=36 法二:或者可以这么求,从四个球里面选两个放入其中的一个盒子:C42*C31=18 另外两个球放入剩下的两个盒子中:A22=2 求得36种

4个不同的小球放入3个有编号的盒子,每个盒子至少放一个小球,有___种...
根据题意,分2步进行分析: ①、把4个小球分成3组,其中一组2只,剩余2组各1只,分组方法有C 4 2 =6种. ②、再把这3组小球全排列,对应3个盒子,有A 3 3 =6种. 再根据分步计数原理可得所有的不同方法共有6×6=36种, 故答案为:36.

将4个球随机放进个3空盒 每个空盒都有球的概率系
首先,这个题目是默认4个球是不同的小球,3个盒子不同 然后,4个球放3个盒子,每个小球有3种放法,因为要把4个球放好才算完所以应该相乘,可能的放法就有3*3*3*3=81种 4个球,放3个盒子要没有空的,就是说有一个盒子装两个球,另外两个一个盒子一个球,假设第一个盒子放两个球,所以就有6*2...

将4个球随机地放入3个盒子,其中一个盒子无球有多少种放法?请稍做解释...
先选一个盒子为空,有三种选法 接下来把球放入两个盒子中,如果只考虑球的数量,则有1-3,2-2,3-1三种方法,所以总共有9种方法。如果要考虑球的区别,每个球有两种选择,则共有2^4=16种方法,但是其中有两种方法是将所有球放在一个盒子里面,不符合要求,因此余14种,总共有3*14=42种方法 ...

将4个不同的小球投入3个相同的盒内,不同的投入方式?
1,2,1的情况对应第一个盒子1个,第二个盒子2个,第三个盒子1个 是不同的情况。对4个相同的球放入3个相同的盒子,用枚举法就可以:1。每个盒子都有球:只有1,1,2一种情况 2。有一个盒子没有球:有1,3,0;2,2,0两种情况 3。只有一个盒子有球:4,0,0只有一种情况。共4种情况...

将4个相同的小球投入3个不同的盒内,不同的投入方式?
因为这样计算会有重复,4个小球是一样的,于是按照1232的投放与2123的投放结果一样。此问题与7个小球放入3个盒子,每个盒子至少放一个小球是等同的。7个小球放在一排:1 1 1 1 1 1 1,在其中添加两个挡板分隔开,挡板放置方案数即为上面等效命题的答案,为C(6,2)=15 ...

【排列与组合】四个不同的小球被放入编号为1,2,3,4的四个盒子中
把三个盒子全排意思也就是先每个盒子分一个球再把剩下的一个球随便分个盒子.就是C41*C31*C31=36 C41是4个球选一个去放盒子.C31是拿一个盒子给选出来的球放.再C31是把剩下的最后一个球放到任意的三个盒子的其中一个.那么选出空盒子的方法有C41 所以是C41*C41*C31*C31=144 ...

排列组合练习题
法1:因为每个盒子都不空,所以有一个盒子会放2个小球,所以先把两个小球捆绑在一起,然后再放入盒子,即:C(n+1,2)×n!=(n+1)×n×n!\/2=n×(n+1)!\/2 法2:先选出n个小球分别放入n个盒子,然后剩下的1个小球在放入n个盒子中的1个,(注意:重复一倍的可能),即:C(n+...

公务员的数学运算中的排列组合问题如何解决?
把4个不同的球放入4个不同的盒子中,由于是4个不同的球和4个不同的盒子,又由于每个盒子最多放一个球,则第一个盒子可以放四个球得任意一个,即放的方法有4种,依次类推第二个盒子放球得方法是3种,第二的2种,第一的1种,它们相乘即4*3*2*1=24,或4!=24呵呵,该类题是关于摆列...

相似回答
大家正在搜