组合数学是一门怎样的学科,与计算机有关系吗

如题所述

合数学(combinatorial mathematics),又称为离散数学。
广义的组合数学就是离散数学,狭义的组合数学是图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。
据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。来自:求助得到的回答
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-06-20
排列与组合是数学的一个分支,与计算机没有多大关系。
计算机的基础数学是布尔代数
第2个回答  2013-06-20
组合数学(combinatorial mathematics),又称为离散数学。
广义的组合数学就是离散数学,狭义的组合数学是图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。

也就是说,组合数学和计算机有关系的。
第3个回答  2013-06-20
广义的组合数学就是离散数学,狭义的组合数学是图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。

狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳组合)等。

历史及发展

虽然数数始于以结计数的远古时代,由于那时人的智力的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数的多样性,产生了各种数数的技巧。

同时,在人们对于形有了深入的了解和研究的基础上,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展,逐步地从形的多样性也发现了数形的多样性,产生了各种数形的技巧。近代的集合论、数理逻辑等反映了潜在的数与形之间的结合。而现代的代数拓扑和代数几何等则将数与形密切地联系在一起了。这些,对于以数的技巧为中心课题的近代组合学的形成与发展都产生了而且还将会继续产生深刻的影响。

由此观之,组合学与其他数学分支有着必然的密切联系。它的一些研究内容与方法来自各个分支也应用于各个分支。当然,组合学与其他数学分支一样也有其独特的研究问题与方法,它源于人们对于客观世界中存在的数与形及其关系的发现和认识。例如,中国古代的《易经》中用十个天干和十二个地支以六十为周期来记载月和年,以及在洛书河图中关于幻方的记载,是人们至今所了解的最早发现的组合问题。

于11和12世纪间,贾宪就发现了二项式系数,杨辉将它整理记载在他的《续古抉奇法》一书中。这就是中国通常称的杨辉三角。事实上,于12世纪印度的婆什迦罗第二也发现了这种组合数。13世纪波斯的哲学家曾讲授过此类三角。而在西方,布莱兹·帕斯卡发现这个三角形是在17世纪中期。这个三角形在其他数学分支的应用也是屡见不鲜的。同时,帕斯卡和费马均发现了许多与概率论有关的经典组合学的结果。因此,西方人认为组合学开始于17世纪。组合学一词是德国数学家莱布尼茨在数学的意义下首次应用。也许,在那时他已经预感到了其将来的蓬勃发展。然而只有到了18世纪欧拉所处时代,组合学才可以说开始了作为一门科学的发展,因为那时,他解决了哥尼斯堡七桥问题,发现了多面体(首先是凸多面体,即平面图的情形)的顶点数、边数和面数之间的简单关系。现在已被人们称为欧拉公式。甚至,当今人们所称的哈密顿圈的首创者也应该是欧拉。这些不但使欧拉成为组合学的一个重要组成部分——图论而且也成为占据现代数学舞台中心的拓扑学发展的先驱。同时,他对导致当今组合学中的另一个重要组成部分——组合设计中的拉丁方的研究所提出的猜想,人们称为欧拉猜想,直到1959年才得到完全的解决。

于19世纪初,高斯提出的组合系数,今称高斯系数,在经典组合学中也占有重要地位。同时,他还研究过平面上的闭曲线的相交问题,由此所提出的猜想称为高斯猜想,它直到20世纪才得到解决。这个问题不仅贡献于拓扑学,而且也贡献于组合学中图论的发展。同在19世纪,由乔治·布尔发现且被当今人们称为布尔代数的分支已经成为组合学中序理论的基石。当然,在这一时期,人们还研究其他许多组合问题,它们中的大多数是娱乐性的。

20世纪初期,庞加莱联系多面体问题发展了组合学的概念与方法,导致了近代拓扑学从组合拓扑学到代数拓扑学的发展。于20世纪的中、后期,组合学发展之迅速也许是人们意想不到的。首先,于1920年费希尔(Fisher,R.A.)和耶茨(Yates,F.)发展了实验设计的统计理论,其结果导致后来的信息论,特别是编码理论的形成与发展.于1939年,坎托罗维奇(Канторович,Л.В.)发现了线性规划问题并提出解乘数法。于1947年丹齐克(Dantzig,G.B.)给出了一般的线性规划模型和理论,他所创立的单纯形方法奠定了这一理论的基础,阐明了其解集的组合结构。直到今天它仍然是应用得最广泛的数学方法之一。这些又导致以网络流为代表的运筹学中的一系列问题的形成与发展。开拓了人们目前称为组合最优化的一个组合学的新分支。在20世纪50年代,中国也发现并解决了一类称为运输问题的线性规划的图上作业法,它与一般的网络流理论确有异曲同工之妙。在此基础上又出现了国际上通称的中国邮递员问题。

另一方面,自1940年以来,生于英国的塔特(Tutte,W.T.)在解决拼方问题中取得了一系列有关图论的结果,这些不仅开辟了现今图论发展的许多新研究领域,而且对于20世纪30年代,惠特尼(Whitney,H.)提出的拟阵论以及人们称之为组合几何的
发展都起到了核心的推动作用。应该特别提到的是在这一时期,随着电子技术和计算机科学的发展愈来愈显示出组合学的潜在力量。同时,也为组合学的发展提出了
许多新的研究课题。例如,以大规模和超大规模集成电路设计为中心的计算机辅助设计提出了层出不穷的问题。其中一些问题的研究与发展正在形成一种新的几何,
目前人们称之为组合计算几何。关于算法复杂性的研究,自1961年库克(Cook,S.A.)提出NP完全性理论以来,已经将这一思想渗透到组合学的各个分支以至数学和计算机科学中的一些分支。

近20年来,用组合学中的方法已经解决了一些即使在整个数学领域也是具有挑战性的难题。例如,范·德·瓦尔登(Van der Waerden,B.L.)于1926年提出的关于双随机矩阵积和式猜想的证明;希伍德(Heawood,P.J.)于1890年提出的曲面地图着色猜想的解决;著名的四色定理的计算机验证和扭结问题的新组合不变量发现等。在数学中已经或正在形成着诸如组合拓扑、组合几何、组合数论、组合矩阵论、组合群论等与组合学密切相关的交叉学科。此外,组合学也正在渗透到其他自然科学以及社会科学的各个方面,例如,物理学、力学、化学、生物学、遗传学、心理学以及经济学、管理学甚至政治学等。[1]

分支

根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。[1]

中国的研究者

在中国当代的数学家中,较早地在组合学中的不同方面作出过贡献的有华罗庚、吴文俊、柯召、万哲先、张里千和陆家羲等。其中,万哲先和他领导的研究组
在有限几何方面的系统工作不仅对于组合设计而且对于图的对称性的研究都有影响。陆家羲的有关不交斯坦纳三元系大集的一系列的文章不仅解决了组合设计方面的
一个难题,而且他所创立的方法对于其后的研究者也产生了和正产生着积极的作用。[1]

组合数学中的著名问题

计算一些物品在特定条件下分组的方法数目。这些是关于排列、组合和整数分拆的。
地图着色问题:对世界地图着色,每一个国家使用一种颜色。如果要求相邻国家的颜色相异,是否总共只需四种颜色?这是图论的问题。
船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、狼就会吃羊。船夫的船每次只能运送一种东西。怎样把所有东西都运过河?这是线性规划的问题。
中国邮差问题:由中国组合数学家管梅谷教授提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个NP完全问题,存在多项式复杂度算法:先求出度为奇数的点,用匹配算法算出这些点间的连接方式,然后再用欧拉路径算法求解。这也是图论的问题。
任务分配问题(也称婚配问题):有一些员工要完成一些任务。各个员工完成不同任务所花费的时间都不同。每个员工只分配一项任务。每项任务只被分配给一个员工。怎样分配员工与任务以使所花费的时间最少?这是线性规划的问题。
如何构作幻方。
大乐透

组合数学的简介
现代数学可以分为两大类:一类是研究连续对象的,如分析学、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物学等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定...

组合数学是一门怎样的学科,与计算机有关系吗
广义的组合数学就是离散数学,狭义的组合数学是图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。据组合学研究与发展的现状,它可以分为...

组合数学简介
在计算机科学领域,组合数学是计算机革命的基础之一。计算机之所以能够被称为“电脑”,在于其内部运行的是由人编写的程序,而这些程序往往基于离散对象的算法设计。正是由于组合算法的存在,使得计算机展现出了一定程度的“思维”能力。组合数学不仅在计算机科学中有着重要应用,它还广泛应用于企业管理、交通规...

组合数学的就业方向是怎样的?
组合数学,也称为离散数学,是数学的一个分支,主要研究离散对象的结构、性质和相互关系。组合数学的就业方向非常广泛,涵盖了许多不同的领域和行业。教育行业:组合数学是许多数学和计算机科学课程的基础,因此,教育是组合数学家的一个重要就业领域。他们可以在大学、研究机构或教育机构中担任教师或研究员,...

组合数学是什么?
组合数学是离散数学的一部分,与图论共同构成离散数学体系。随着计算机的出现,组合数学迅速发展,成为现代数学的两大分支之一。其在计算机科学、编码、密码学、物理、化学、生物等领域均有重要应用。微积分与近代数学推动了工业革命,而组合数学则推动了计算机革命。计算机程序,即算法的核心对象是离散数据,这...

具体数学VS离散数学VS组合数学什么关系
计算机科学即算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。具体数学是与离散数学正好相对应的数学学科的分支。 具体数学和离散数学一样也是计算机科学的不可...

离散数学、组合数学、图论的关系是什么?
图论是组合数学的一个分支,而离散数学是专为计算机专业编的数学书,和组合数学有部分知识交叉。离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限...

组合数学在计算机科学中有哪些具体应用
组合数学是近年来随着计算机科学的发展而新兴起来的一门综合性、边缘性学科。组合数学是什么,有很多不同的看法。Richard A. BrualDi所著5Introductory Combinatorics6中认为组合数学研究的是事物按照某种规则的安排,主要有:存在性问题,计数性问题和对已知安排的研究。Daniel I. A. Cohen所著5Basic ...

离散数学和组合数学内容简介
在计算机编程中,解决问题的核心关键在于算法,而组合数学正是算法研究的核心内容之一。对于参加信息学奥林匹克活动的年轻人来说,这门学科的重要性不言而喻,它能够提升思维能力、分析和判断技巧,以及自主设计算法的能力,对提高解题技能大有裨益。《离散数学和组合数学》这本书的独特之处在于它试图将理论...

组合数学在计算机科学中的应用有哪些
与传统的数学课程相比,组合数学研究的是一些离散的事物之间存在的数学关系,包括存在性问题、计数性问题、构造性问题以及最优化问题等,其主要内容是计数和枚举。计数问题是组合学中研究得最多的内容,它出现在所有的数学分支中。计算机科学需要研究算法,必须对算法所需的运算量和存储单元作出估计,即算法的时间...

相似回答