证明三角形相似的所有定理,如:对边及夹角相等的两个三角形相似

如题所述

根据相似图形的特征来判断。(对应边成比例,对应角相等)
  1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;
  (这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)
  2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
  
  3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
  
  4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
  
   绝对相似三角形
  1.两个全等的三角形一定相似。
  
  2.两个等腰直角三角形一定相似。
  
  3.两个等边三角形一定相似。
  
  直角三角形相似判定定理
  1.斜边与一条直角边对应成比例的两直角三角形相似。
  2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
  射影定理
  三角形相似的判定定理推论
  推论一:顶角或底角相等的那个的两个等腰三角形相似。
  推论二:腰和底对应成比例的两个等腰三角形相似。
  推论三:有一个锐角相等的两个直角三角形相似。
  推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
  推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
  推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 编辑本段性质   1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
  2.相似三角形周长的比等于相似比。
  3.相似三角形面积的比等于相似比的平方。 编辑本段特例   能够完全重合的两个三角形叫做全等三角形。(congruent triangles)
  全等三角形是相似三角形的特例。全等三角形的特征:
  1.形状完全相同,相似比是k=1。
  全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
  因此,相似三角形包括全等三角形。
  全等三角形的定义
  能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)
  当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
  由此,可以得出:全等三角形的对应边相等,对应角相等。
  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
  (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
  (3)有公共边的,公共边一定是对应边;
  (4)有公共角的,角一定是对应角;
  (5)有对顶角的,对顶角一定是对应角;
  三角形全等的判定公理及推论
  1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
  2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
  3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
  由3可推到
  4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
  5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
  所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
  注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
  A是英文角的缩写(angle),S是英文边的缩写(side)。
  全等三角形的性质
  1、全等三角形的对应角相等、对应边相等。
  2、全等三角形的对应边上的高对应相等。
  3、全等三角形的对应角平分线相等。
  4、全等三角形的对应中线相等。
  5、全等三角形面积相等。
  6、全等三角形周长相等。
  7、三边对应相等的两个三角形全等。(SSS)
  8、两边和它们的夹角对应相等的两个三角形全等。(SAS)
  9、两角和它们的夹边对应相等的两个三角形全等。(ASA)
  10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)
  11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)
  全等三角形的运用
  1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。
  2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
  3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
  4、用在实际中,一般我们用全等三角形测等距离。以及等角,用于工业和军事。有一定帮助。
  全等三角形做题技巧
  一般来说考试中线段和角相等需要证明全等。
  因此我们可以来采取逆思维的方式。
  来想要证全等,则需要什么
  另一种则要根据题目中给出的已知条件,求出有关信息。
  然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
  位似
  概念:相似且对应顶点的连线相交于一点,对应边互相平行的两个图形叫做位似。
  位似一定相似但相似不一定位似~
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-07-11
边角边 、边边角 、角边角 、边边边、 角角边

证明三角形相似的所有定理,如:对边及夹角相等的两个三角形相似
1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3.如果两个三角...

初中数学~证明三角形相似的相关定理~
1、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 2、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 3、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 4、边边边公理(SSS) 有三边对应相等的两个三角形全等 5、斜边、直角边公理(HL) 有斜边和一条...

相似三角形判定定理有哪些(全部)
判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(sas)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(sss)判定定理4:...

怎么证明三角形相似和全等
对应角相等,对应边成比例的两个三角形叫做相似三角形。判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)判定定理2:如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似(SAS)判定定理3:如果两个三角形的三组对应边成比例...

相似三角形有哪些性质定理?
1、平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2、三边成比例的两个三角形相似.(SSS)3、两边成比例且夹角相等的两个三角形相似. (SAS)4、两角分别相等的两个三角形相似.(AA)5、斜边和一条直角边成比例的两个直角三角形相似(HL)推论一:腰和底对应成比例的两个等腰...

相似三角形的判定定理
1、AA判定定理:也叫做角角判定定理,如果两个三角形有两组对应角分别相等,那么这两个三角形相似。这是相似三角形最基础的判定定理,通过角度的相等性来确定三角形的相似性。2、SAS判定定理:也叫做边角边判定定理,如果两个三角形有两组对应边成比例,并且夹角相等,那么这两个三角形相似。这个定理...

相似三角形全等的定理有哪些?
例如,考虑两个三角形ABC和DEF,其中AB\/DE = BC\/EF = AC\/DF。根据SSS相似定理,我们可以得出这两个三角形是相似的。如果此外还有∠A = ∠D,∠B = ∠E,∠C = ∠F,那么它们将是全等的。这些相似三角形全等的定理是基于角度和边长之间的关系,帮助我们判断两个三角形是否相似或全等。通过应用...

相似三角形的判定的证明
25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 ...

三角形相似的证明过程有哪些思路?
1.利用角边角定理:如果两个三角形有两个角分别相等,且这两个角的夹边也相等,那么这两个三角形就是相似的。这是最常用的证明三角形相似的方法。2.利用角角边定理:如果两个三角形有两个角分别相等,且这两个角的对边也成比例,那么这两个三角形就是相似的。这种方法在已知两边成比例的情况下...

相似三角形所有定理
三角形相似判定定理 相似三角形判定定理:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形...

相似回答