设a,b是两个不为0的向量,它们的夹角为<a,b> (或用α ,β, θ ,..,字母表示)
1、由向量公式:cos<a,b>=a.b/|a||b|.①
2、若向量用坐标表示,a=(x1,y1,z1), b=(x2,y2,z2),
则,a.b=(x1x2+y1y2+z1z2).
|a|=√(x1^2+y1^2+z1^2), |b|=√(x2^2+y2^2+z2^2).
将这些代入②得到:
cos<a,b>=(x1x2+y1y2+z1z2)/[√(x1^2+y1^2+z1^2)*√(x2^2+y2^2+z2^2)] ②
上述公式是以空间三维坐标给出的,令坐标中的z=0,则得平面向量的计算公式。
两个向量夹角的取值范围是:[0,π].
夹角为锐角时,cosθ>0;夹角为钝角时,cosθ<0.
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。
由平面向量基本定理可知,有且只有一对实数(x,y),使得 ,因此把实数对 叫做向量 的坐标,记作 。这就是向量 的坐标表示。其中 就是点 的坐标。向量 称为点P的位置向量。
参考资料:百度百科-向量
按以下公式求:cos s=向量a和向量b的内积/(向量a的长度与向量b的长度的积),s为向量a、b之间的夹角。如果是坐标形式;a=(x1,y1),b=(x2,y2),a*b=x1x2+y1y2,|a|=√(x1^2+y1^2),|b|=√(x2^2+y2^2),cos<a,b>=[x1y1+x2y2] / [√(x1^2+y1^2)√(x2^2+y2^2)]
知识拓展:
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 [1] 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
本回答被网友采纳两个向量的夹角怎么求
求两个向量的夹角公式:cos=(ab的内积)。在数学中,两条直线(或向量)相交所形成的最小正角称为这两条直线(或向量)的夹角,通常记作∠Θ。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向...
两向量的夹角公式是什么
两向量的夹角公式是cosθ=向量a·向量b\/|向量a|×|向量b|,其中θ是两向量之间的夹角,向量a和向量b是参与计算的两个向量,“·”表示向量的点乘运算,|向量a|和|向量b|分别表示向量a和向量b的模长。公式用于计算两个向量之间的夹角余弦值,从而可以确定两个向量之间的夹角大小。
向量的夹角公式
向量的夹角公式为:cosθ = \/ 。其中θ为向量A和向量B之间的夹角,A和B为向量,·表示点乘,|A|和|B|分别表示向量A和向量B的模长。下面详细解释该公式:1. 向量的夹角与点乘关系:在向量空间中,两个非零向量的夹角可以通过它们之间的点乘来计算。点乘的结果是一个标量,这个标...
两个向量的夹角
夹角为α=arccos(∑(xiyi)\/sqrt((∑(xixi)∑(yiyi)))。即:cos夹角=两个向量的内积\/向量的模(“长度”)的乘积。另:两个向量应当是同一个空间里的,也就是m和n应该相等。例如:平面向量夹角公式:cos=(ab的内积)\/(|a||b|)(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x...
向量夹角怎么求
向量夹角是cosθ=向量a向量b\/|向量a|*|向量b|。两相交直线所成的锐角或直角为两直线夹角。而向量夹角的余弦值等于=向量的乘积\/向量模的积。向量都有方向,两个向量正向的夹角就是平面向量的夹角,如∠aob=60°,就是指向量oa与ob夹角为60°,而说向量ao与向量ob夹角,那就是120°了。向量夹角的...
向量的夹角是怎么算的?
θ = arccos[(a·b) \/ (|a|·|b|)]其中arccos表示反余弦函数,计算结果一般以弧度为单位。如果需要以角度为单位,则可以将计算结果乘以180\/π进行转换,得到向量的夹角的度数表示。需要注意的是,当向量a和向量b之间的夹角为锐角时,计算结果为正值;当向量a和向量b之间的夹角为钝角时,计算...
两向量夹角怎么求
两向量夹角用公式cosθ=a*b\/(|a|*|b|)求得。数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指代表向量的方向;线段长度代表向量的大小。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之...
向量a与向量b的夹角公式是什么?
向量a与向量b的夹角公式是:cos=(ab的内积)\/(|a||b|)。其中设a,b是两个不为0的向量。而向量的夹角就是向量两条向量所成角,而且需要注意的是向量是具有方向性的。也就是说,两个向量夹角的取值范围是:0到90度。向量的表示方法:1、代数表示:一般印刷用黑体的小写英文字母(a、b、c等)...
两向量的夹角怎么求
两个向量的夹角可以通过向量的点积和向量的模长来求得。具体步骤如下:1.计算向量的点积 首先,计算两个向量的点积。设有向量A和向量B,它们的点积表示为A·B。点积的计算公式为A·B=|A|*|B|*cosθ,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角。2.计算向量的模长 计算...
向量夹角的公式是什么?
角度 = 弧度 * (180° \/ π)其中,π 是圆周率,约等于 3.14159。通过这个公式,我们可以计算两个向量之间的夹角,从而了解它们之间的方向关系。如果两个向量夹角为零度,则表示它们的方向相同;如果夹角为180度,则表示它们的方向相反;如果夹角在0度和180度之间,则表示它们的方向不同。