判断级数敛散性

判断级数敛散性第七,八题,好像是一种类型的。求大佬解答!谢谢!

用比值法。被定义的物理量往往是反映物质的最本质的属性,它不随定义所用的物理量的大小取舍而改变,如确定的电场中的某一点的场强就不随q、F而变。

当然用来定义的物理量也有一定的条件,如q为点电荷,S为垂直放置于匀强磁场中的一个面积等。


扩展资料

简单的比较级数就表明,只要∑|un|收敛就足以保证级数收敛;因而分解式(不仅表明∑|un|的收敛隐含着原级数∑un的收敛,而且把原级数表成了两个收敛的正项级数之差。由此易见,绝对收敛级数同正项级数一样,很像有限和,可以任意改变项的顺序以求和,可以无限分配地相乘。

但是条件收敛的级数,即收敛而不绝对收敛的级数,决不可以这样。这时式右边成为两个发散(到+∞)的、其项趋于零的、正项级数之差,对此有黎曼定理。

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-04-11
判断是否收敛,第一步,记住是第一步,不是去思考是否为正项级数,要采取比较审敛法还是什么审敛法,而是先看通项是否趋近0.
在学极限的时候我们知道当n→∞时.a^(1/n)极限是1,n^(1/n)极限也是1,所以这两道题通项都不趋近0,还用再去找审敛法吗?本回答被网友采纳
第2个回答  2018-04-10
这个是我见过最简单的。。。。追答

判断这个级数的一般项

当n趋于无穷,而一般项不等于0的级数发散

本回答被提问者采纳

如何判断级数的敛散性?
1、证明方法一:un=1\/n²是个正项级数,从第二项开始1\/n²<1\/(n-1)n=1\/(n-1)-1\/n 所以这个级数是收敛的。2、证明方法二:lim(1\/n*tan1\/n)\/(1\/n^2)=lim(tan1\/n)\/(1\/n)=1;所以1\/n*tan1\/n与1\/n^2敛散性相同,1\/n^2收敛,所以原级数收敛。

判断级数敛散性的方法
1、先判断这是正项级数还是交错级数;2、判定正项级数的敛散:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散是已知的,如果不是几何级数或p级数,则用比值判别法或根值判...

怎么判断级数的敛散性?
所以:a>1收敛,0<a<1,级数发散。

判断级数的敛散性
前者发散,后者条件收敛。如图所示

比较判别法判断级数的敛散性
比较判别法判断级数的敛散性是:limn^(a+1)\/(na(2n-1))=1\/2,因为:级数1\/n^(a+1)收敛,原级数收敛。资料扩展:数学[英语:mathematics,源自古希腊语μάθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的...

如何判断级数敛散性?
1、级数n\/3∧n的敛散性的判断过程见上图。2、判断级数n\/3∧n的敛散性的方法:用根值法。3、由于级数是正项级数,根据一般项的特点,采用根值法进行敛散性的判别。4、用根值法,可以判断出级数n\/3∧n是收敛的。具体的级数n\/3∧n的敛散性的判断详细步骤及说明见上。

判断级数的敛散性方法
判断级数的敛散方法:首先,考虑当项数无限增大时,一般项是否趋于零。如果不趋于零,便可判断级数发散。如果趋于零,则考虑其它方法。考察级数的部分和数列的敛散是否容易确定,如能确定,则级数的敛散自然也明确了。但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,这时就应考虑其它...

如何判断级数的敛散性
判断级数的敛散性可以依据以下模板:正项级数 ① 是正项级数收敛的必要非充分条件 当遇到正项级数时,首先判断其Un在n趋近于无穷时极限是否等于0,若不等于0,则可直接断定级数发散;若等于0,则进一步通过其他方法去判定。②比值\/根值审敛法 这两种审敛法的本质都是Un自身的比较,只不过一个是相邻...

如何判断一个级数的敛散性?
级数的敛散性准则是指一组判别级数敛散性的准则。这组准则包括比较审敛法、柯西审敛法、阿贝尔定理等。这些准则为我们判断级数的敛散性提供了重要的工具。P级数是一种特殊的级数,其一般项为1\/n^p。这种级数的敛散性与其一般项的指数p有关。具体地说,当p>1时,P级数收敛;当p≤1时,P级数发散...

如何判断级数的敛散性
判断级数敛散性的方法总结如下:1、极限审敛法:极限审敛法是一种通过比较两个级数的极限来判断其收敛性的方法。如果一个级数的极限为零,则该级数收敛;如果一个级数的极限为无穷大,则该级数发散。因此,我们可以通过计算级数的极限来判断其收敛性。2、比较审敛法:比较审敛法是一种通过比较两个...

相似回答