1+1\/1+2+1\/1+2+3+1\/1+2+3+4+.………+1\/1+2+3+.……+10的简便运算
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+.………+1\/1+2+3+.……+10的简便运算 原式 =1+1\/3+1\/6+1\/10+1\/15+1\/21+1\/28+1\/36+1\/45+1\/55 =2×(1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90+1\/110) =2×(1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1...
1 + 1\/1+2 + 1\/1+2+3 + 1\/1+2+3+4 + …… +1\/1+2+3+……+50
有1+2+3+……+n=n(1+n)\/2 an=2\/n(n+1)=2[1\/n-(1\/n+1)]那么他们的和就是2(1-1\/2+1\/2-1\/3+1\/3-1\/4+……+1\/50-1\/51)=2(1-1\/51)=100\/51
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+100这道数学题怎么做,尽量...
化减:2\/1*2+2\/2*3+2\/3*4+…然后列项:(2\/1-2\/2)+(2\/2-2\/3)…然后化简:2\/1-2\/101=200\/101 如果取极限得2
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+10怎么算
1+2+3+4=4x5\/2 1+2+……+ n-1 + n =(n-1)n\/2 1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+10 =1+2 (1\/2x3 + 1\/3x4 + ……+ 1\/10x11)=1+2(1\/2 -1\/3+1\/3-1\/4+……+1\/9-1\/10+1\/10-1\/11)=1+2(1\/2 - 1\/11)=1+9\/11=20\/11 ...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+1\/1+2+3+4+5+...+1\/!+2+3+...+100=?_百 ...
1\/1+2+3+...+n=2\/n(n+1)=(2\/n)-(2\/n+1)所以1+ 1\/1 +2+ 1\/1 +2+3+ 1\/1 +2+3+4+ 1\/1 +2+3+4+5+...+ 1\/1 +2+3+...+100=1+(2\/2-2\/3)+(2\/3-2\/4)+(2\/4-2\/5)+...+(2\/100-2\/101)=1+1-2\/101=200\/101 ...
1\/1 + 1\/1+1 +1\/1+2+3 +1\/1+2+3+4 +……+1\/1+2+3+4+……+11=? 注:1...
原式=3\/2+2*[﹙1\/3-1\/4﹚﹢﹙1\/4-1\/5﹚+﹙1\/5-1\/6﹚+……+﹙1\/10-1\/11﹚+﹙1\/11-1\/12﹚] 第一步:裂项(注意这里的前两项直接加就行)=3\/2+2*[1\/3-1\/12] 第二步:相消,减少项数 =2 第三步:直接...
1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+…+1\/(1+2+3+…+100) 简便计算方法...
简便计算方法:1+2+3+...+n=n(n+1)\/21\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 它的原理是...
奥数题1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……+1\/1+2+3+4+5+……100
推导过程:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3……+n)= 1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+……+1\/[(1+n)×n÷2]——① = 2\/2+2\/(1+2)×2+2\/(1+3)×3+……+2\/(1+n)×n——② = 2×[1\/2+1\/2-1\/3+1\/3-1\/4+……+1...
1 + 1+2分之1 + 1+2+3分之1 + 1+2+3+4分之1…… + 1+2+3+4…+100分...
所以 1\/(1+2+……+n)=2\/n(n+1)=2*[1\/n-1\/(n+1)]所以 1\/(1+2)=2*(1\/2-1\/3)……1\/(1+2+……+100)=2*(1\/100-1\/101)而 1=2*(1-1\/2)所以 1+1\/(1+2)+1\/(1+2+3)+(1\/1+2+3+4)+...+1\/(1+2+3+...+100)=2*[(1-1\/2)+(1\/2-1...
数学问题 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+L+100)的...
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 性质 若已知一个...