纳米材料的特点:
当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。
我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。也就是说,通过纳米技术得到了全新的材料。
纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。
“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。
无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。
纳米材料的用途:
纳米材料的应用前景是十分广阔的,如:纳米电子器件,医学和健康,航天、航空和空间探索,环境、资源和能量,生物技术等。我们知道基因DNA具有双螺旋结构,这种双螺旋结构的直径约为几十纳米。
用合成的晶粒尺寸仅为几纳米的发光半导体晶粒,选择性的吸附或作用在不同的碱基对上,可以“照亮”DNA的结构,有点像黑暗中挂满了灯笼的宝塔,借助与发光的“灯笼”,我们不仅可以识别灯塔的外型,还可识别灯塔的结构。
简而言之,这些纳米晶粒,在DNA分子上贴上了标签。 目前,我们应当避免纳米的庸俗化。尽管有科学工作者一直在研究纳米材料的应用问题,但很多技术仍难以直接造福于人类。2001年以来,国内也有一些纳米企业和纳米产品,如“纳米冰箱”,“纳米洗衣机”。
这些产品中用到了一些“纳米粉体”,但冰箱和洗衣机的核心作用任何传统产品相同,“纳米粉体”赋予了它们一些新的功能,但并不是这类产品的核心技术。
因此,这类产品并不能称为真正的“纳米产品”,是商家的销售手段和新卖点。现阶段纳米材料的应用主要集中在纳米粉体方面,属于纳米材料的起步阶段,应该指出这不过是纳米材料应用的初级阶段,可以说这并不是纳米材料的核心,更不能将“纳米粉体的应用”等同与纳米材料。
扩展资料:
纳米材料应用范围
1、 天然纳米材料
海龟在美国佛罗里达州的海边产卵,但出生后的幼小海龟为了寻找食物,却要游到英国附近的海域,才能得以生存和长大。最后,长大的海龟还要再回到佛罗里达州的海边产卵。如此来回约需5~6年,为什么海龟能够进行几万千米的长途跋涉呢?它们依靠的是头部内的纳米磁性材料,为它们准确无误地导航。
生物学家在研究鸽子、海豚、蝴蝶、蜜蜂等生物为什么从来不会迷失方向时,也发现这些生物体内同样存在着纳米材料为它们导航。
2、 纳米磁性材料
在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。
3、 纳米陶瓷材料
传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。
4、纳米传感器
纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。
5、 纳米倾斜功能材料
在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。
如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,最终便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。
6、纳米半导体材料
将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。
利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。
7、纳米催化材料
纳米粒子是一种极好的催化剂,这是由于纳米粒子尺寸小、表面的体积分数较大、表面的化学键状态和电子态与颗粒内部不同、表面原子配位不全,导致表面的活性位置增加,使它具备了作为催化剂的基本条件。
镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂。纳米铂黑催化剂可以使乙烯的氧化反应的温度从600 ℃降低到室温。
8、 医疗上的应用
血液中红血球的大小为6 000~9 000 nm,而纳米粒子只有几个纳米大小,实际上比红血球小得多,因此它可以在血液中自由活动。如果把各种有治疗作用的纳米粒子注入到人体各个部位,便可以检查病变和进行治疗,其作用要比传统的打针、吃药的效果好。
参考资料:百度百科-纳米材料
特点:当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。
1、是它对光的反射能力变得非常低,低到<1%;
2、机械、力学性能成几倍增加;
3、其熔点会大大降低;
4、有特殊的磁性。
在各个领域的主要用途有:
1、医药:使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。
2、家电:用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用处作电冰霜、空调外壳里的抗菌除味塑料。
3、电子计算机和电子工业:可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。
4、环境保护:环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。
5、纺织工业:在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。
6、机械工业采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。
扩展资料
纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1nm~100nm)或由他们作为基本单元构成的材料。这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。
参考资料纳米材料百度百科
本回答被网友采纳纳米材料的特点和用途
在能源领域,纳米材料可用于提高燃料电池和太阳能电池的效率,或作为高效催化剂、电极材料和传感器。在环境领域,纳米材料可用于监测和治理大气、水和土壤等环境问题。在信息技术领域,纳米材料可用于制造智能材料、纳米存储器、纳米晶体管等。
纳米材料的特点和用途
2. 纳米材料的用途:纳米材料可用于开发高效的光伏电池和热电转换材料。例如,利用纳米结构的热电材料可以将电子设备的废热转化为电能,提高能源利用效率。3. 纳米材料以其独特的尺寸相关效应和潜在的应用价值,正在成为科技发展中不可或缺的一部分。未来在多个领域的应用将会越来越广泛。
纳米材料的特点和用途
纳米材料的特点主要包括尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应。这些特点使得纳米材料在多个领域具有广泛的应用。首先,纳米材料的尺寸效应指的是其尺寸通常在1到100纳米之间,这使得它们具有与宏观材料显著不同的物理和化学性质。例如,当金属颗粒的尺寸减小到纳米级别时,其熔点会显著降低,颜色...
纳米材料的特点和用途
纳米材料的用途:纳米材料的应用前景是十分广阔的,如:纳米电子器件,医学和健康,航天、航空和空间探索,环境、资源和能量,生物技术等。我们知道基因DNA具有双螺旋结构,这种双螺旋结构的直径约为几十纳米。用合成的晶粒尺寸仅为几纳米的发光半导体晶粒,选择性的吸附或作用在不同的碱基对上,可以“照亮...
纳米材料的特点和用途
1. 生物医学应用:纳米材料在生物医学领域的应用广泛,包括作为药物递送系统、促进药物释放的载体,以及作为生物传感器和生物探针。这些应用利用了纳米材料的独特性质,如高比表面积和可调的表面特性。2. 能源领域:在能源领域,纳米材料被用于提升燃料电池和太阳能电池的性能。它们也作为高效的催化剂、电极...
纳米材料有哪些优点
纳米材料的优点:一、超强的力学性能 纳米材料展现出极高的强度和硬度。由于其微观结构的特点,纳米材料在受到外力作用时,能够更好地抵抗变形和断裂,从而表现出更高的力学性能。二、优异的电学性能 纳米材料在电学方面表现出色。它们具有高电导率和高响应速度,使得电子设备更加高效和灵敏。此外,纳米材料...
纳米材料的特点和用途
纳米材料的特性可以用“更轻、更高、更强”来概括。它们使器件更轻便,性能更优越,力学性能更强。纳米材料的用途:纳米材料的应用前景非常广阔,包括纳米电子器件、医学和健康、航天航空和空间探索、环境资源能源、生物技术等领域。例如,利用纳米技术,可以合成晶粒尺寸仅为几纳米的发光半导体晶粒,通过选择...
纳米材料具有哪些特点
纳米材料的特点主要有以下几点:1.尺寸效应。纳米材料具有显著的尺寸效应,当材料尺寸减小到纳米级别时,其物理和化学性质会发生显著变化。例如,金属纳米材料的熔点和沸点会显著降低,使其具有更高的反应活性。此外,纳米材料的力学性能和电学性能也会发生显著变化。独特的光学性质。纳米材料具有独特的光学性质...
纳米材料的特点和用途
它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质 纳米材料的用途很广,主要用途有:医学,环境保护,纺织工业,机械工业。
纳米材料的特点是什么和什么
银的熔点为960℃,而它的纳米材料的熔点却只有100℃,用开水就能将它熔化。④耐热、耐腐蚀性能好,所以常用来制造火箭发动机的喷气口。⑤能够提高燃料的燃烧效率,如果将超微粒子掺入到火箭燃料里,可使燃料的燃烧效率提高几十到上百倍,从而大大提高火箭的飞行速度,为人类去太空旅游创造了有利条件。