负数的运算包括加法法则,乘法法则,除法法则,开方法则,运算律,i的乘方法则等。具体运算方法如下:
1.加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即
2.乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。即
3.除法法则
复数除法定义:满足
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,
即
4.开方法则
若zn=r(cosθ+isinθ),则
(k=0,1,2,3?n-1)
5.运算律
加法交换律:z1+z2=z2+z1
乘法交换律:z1×z2=z2×z1
加法结合律:(z1+z2)+z3=z1+(z2+z3)
乘法结合律:(z1×z2)×z3=z1×(z2×z3)
分配律:z1×(z2+z3)=z1×z2+z1×z3
6.i的乘方法则
i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1(其中n∈Z)
7.棣莫佛定理
对于复数z=r(cosθ+isinθ),有z的n次幂
zn=rn[cos(nθ)+isin(nθ)] (其中n是正整数)
则
共轭复数释义
对于复数
称之为复数
=a-bi为z的共轭复数。即两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。复数z的共轭复数记作
性质
根据定义,若
(a,b∈R),则
=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源----两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反。
共轭复数有些有趣的性质:
参考资料来源:百度百科-复数
复数的运算法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。即 3.除法法则 复数除法定义:满足 的复数 叫复数a+bi除以复数c+di的商。运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,即 4.开方法则 若zn=r(cos...
复数的运算法则有哪些?
(4)除法法则:复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。运算方法:可以把除法换算成乘法做,在分子分母同时乘上分母的共轭.。所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
复数的运算公式
复数的运算律:1、加法交换律:z1+z2=z2+z1。2、乘法交换律:z1×z2=z2×z1。3、加法结合律:(z1+z2)+z3=z1+(z2+z3)。4、乘法结合律:(z1×z2)×z3=z1×(z2×z3)。5、分配律:z1×(z2+z3)=z1×z2+z1×z3。
复数的运算公式是什么?
复数运算公式主要包括加法、减法、乘法和除法四个部分:1. 加法法则: 任意两个复数z1=a+bi和z2=c+di的和为(a+bi)+(c+di) = (a+c) + (b+d)i,实部之和对应实部,虚部之和对应虚部。2. 减法法则: 同样,差为(a+bi)-(c+di) = (a-c) + (b-d)i,实部之差对应实部,虚部之...
复数的运算公式是什么?
复数的运算公式主要包括加法、减法、乘法、除法。一、加法与减法 复数之间的加法和减法运算,其原理与实数相似。对于复数a + bi和c + di,它们的加法运算是对应实部和虚部相加,即 + i。减法运算则对应实部和虚部相减,即 + i。二、乘法 复数的乘法运算是基于以下公式:× = + i。这个公式...
请问复数的运算公式有哪些?具体一点,包括加减乘除
复数的计算和实数的计算法则一样,只是要把实数单位和复数单位单独相加。(a+2i)\/i=-i(a+2i)\/(-i*i)=2-ai=b+i 所以a=-1,b=2实数与实数相对,复数与复数相对。
复数的计算
复数的计算方法如下:1、加法法则:设z1=a+bi,z2=c+di是任意两个复数。运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。2、乘法法则:复数的乘法法则:设z1=a+bi,z2=c+di是任意两个复数。运算方法:两个复数相乘,把实部相乘,虚部相乘,然后开方。
复数的公式
复数的公式如下:一、公式解答 加法交换律:z1+z2=z2+z1乘法交换律:z1×z2=z2×z1加法结合律:(z1+z2)+z3=z1+(z2+z3)乘法结合律:(z1×z2)×z3=z1×(z2×z3)分配律:z1×(z2+z3)=z1×z2+z1×z3。二、定义 形如a+bi(a、b均为实数)的数为复数,其中,a被称...
复数的四则运算公式是什么?
除法运算:复数除法通常需要通过与共轭复数相乘来消除分母中的虚数部分。具体公式为: ÷ = [ × ] ÷ 其中,是的共轭复数。通过此公式,可以将复数除法转化为较为简单的乘法与实数除法运算。总的来说,复数的四则运算需要特别注意虚数部分的运算规则,尤其是乘法与除法中虚数对结果的影响。熟练掌握...
复数的四则运算公式是什么?
复数的四则运算公式 (1)加法运算 设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。(2)乘法运算 设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。其实就是...