对于一阶微分方程,形如:
y'+p(x)y+q(x)=0的称为"线性"
例如:
y'=sin(x)y是线性的
但y'=y^2不是线性的
注意两点:
(1)y'前的系数不能含y,但可以含x,如:
y*y'=2 不是线性的
x*y'=2 是线性的
(2)y前的系数也不能含y,但可以含x,如:
y'=sin(x)y 是线性的
y'=sin(y)y 是非线性的
(3)整个方程中,只能出现y和y',不能出现sin(y),y^2,y^3等等,如:
y'=y 是线性的y'=y^2 是非线性的
扩展资料:
简单来讲,线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。
线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。
微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。
如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。
线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。
因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
形为 ax+by+...+cz+d=0 ,关于x、y的线性方程,是指经过整理后能变形为ax+by+c=0的方程(其中a、b、c为已知数,a、b不同时为0)。一元线性方程是最简单的方程,其形式为ax=b。因为把一次方程在坐标系中表示出来的图形是一条直线,故称其为线性方程。
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。
微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不
过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
参考资料:百度百科-线性微分方程
本回答被网友采纳线性微分方程和非线性的区别 线性微分方程和非线性有什么区别
1、微分方程中的线性,指的是y及其导数y都是一次方。如y=2xy。2、非线性,就是除了线性的。如y=2xy^2。3、
如何判断线性和非线性微分方程?
微分方程判断线性非线性是:在线性微分方程中,只允许出现函数本身以及函数的各阶导数,并且之间只能进行简单的加减运算。具体来说,对于一阶线性微分方程,其中,P(x)和Q(x)是已知函数,y是未知函数。这个方程中,未知函数y及其一阶导数形成了线性关系。这里要注意的是,函数本身跟所有的导函数之间只能...
如何判断一个微分方程是线性,还是非线性微分方程?!
1. 首先,需要检查微分方程中是否只包含未知函数及其各阶导数作为整体的一次幂。如果是这样,该微分方程就是线性的。2. 换句话说,如果微分方程中的未知函数y及其导数都不超过一次幂,那么它就是线性微分方程。3. 线性微分方程的特点是,关于未知函数及其各阶导数的项都是一次幂的。一旦方程中出现未知函...
线性微分方程与非线性微分方程的区别是什么?
3、整个方程中,只能出现y和y',不能出现sin(y),y^2,y^3等等,如: y'=y 是线性的 y'=y^2 是非线性的。
如何判断微分方程是否是线性微分方程?
问题一:如何判断微分方程是否是线性微分方程 线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。问题二:怎么判断一个方程是否为微分方程? 微分方程,即由自变量、未知函数、以及未知函数对自变量的任意阶导数所组成的方程。方程中出现的导数的最高阶数即为方程的阶数。...
怎么判断方程是线性还是非线性
结论是,判断一个方程是否为线性,关键在于它是否满足特定的规则:仅允许函数本身及其导数的加减运算,且这些函数之间不能进行除法、指数、对数等复杂运算。如果存在任何其他运算或者函数间的组合超出这些基本规则,那么它就被视为非线性方程。例如,当描述一个系统动态的微分方程是非线性的,那么该系统的行为...
怎样判断微分方程是线性还是非线性的?
总的来说,判断微分方程是否为线性或非线性主要看其是否含有未知函数的幂次项以及幂次的高低。如果未知函数的幂次最高不超过一次,那么这个微分方程就是线性的;如果未知函数的幂次高于一次,那么这个微分方程就是非线性的。这两种类型的微分方程在解的性质和求解方法上都有很大的不同。
怎样判断线性还是非线性微分方程?
对于一阶微分方程,形如:y'+p(x)y+q(x)=0 的称为"线性"例如:y'=sin(x)y是线性的 但y'=y^2不是线性的 注意两点:(1)y'前的系数不能含y,但可以含x,如:y*y'=2不是线性的 x*y'=2是线性的 (2)y前的系数也不能含y,但可以含x,如:y'=sin(x)y是线性的 y'=sin(y)y是非...
线性和非线性如何区分?
线性和非线性的判断方法如下:1、线性微分方程只能出现函数本身,以及函数的任何阶次的导函数女;函数本身跟所有的导函数之间除了加减之外,不可以有任何运算;函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;不允许对函数本身、各阶导函数做任何形式的复合运算。2、非线性方程就是...
如何判断一个微分方程是线性,还是非线性微分方程?!
如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。