高等数学,全微分方程通解怎么求

如题所述

第1个回答  2017-01-05

本回答被提问者采纳
第2个回答  2017-01-05
dy/dx=y+x,先解dy/dx=y,dy/y=dx,lny=x+C,y=Ce^x,然后常数变易法,y=C(x)e^x,C'(x)e^(x)+C(x)e^x=C(x)e^x+x,C'(x)=x/e^(x)=xe^(-x),C(x)=∫xe^(-x)dx=-∫xde^(-x)=-xe^(-x)+∫e^(-x)dx=-xe^(-x)-e^(-x)+C,y=C(x)e^x=-x-1+Ce^x

全微分方程的通解如何表达?
全微分方程求通解如下:u(x,y)=P(x,y)dx+Q(x,y)=C全微分方程,又称恰当方程。一、全微分 1、如果函数z=f(x, y) 在(x, y)处的全增量,Δz=f(x+Δx,y+Δy)-f(x,y),可以表示为Δz=AΔx+BΔy+o(ρ)。2、其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于O(ρ=√...

高等数学,全微分方程通解怎么求
dy\/dx=y+x,先解dy\/dx=y,dy\/y=dx,lny=x+C,y=Ce^x,然后常数变易法,y=C(x)e^x,C'(x)e^(x)+C(x)e^x=C(x)e^x+x,C'(x)=x\/e^(x)=xe^(-x),C(x)=∫xe^(-x)dx=-∫xde^(-x)=-xe^(-x)+∫e^(-x)dx=-xe^(-x)-e^(-x)+C,y=C(x)e^x=-x-...

全微分方程的通解
(2) 积分因子法:存在一个非零函数$u(x,y)$,使得$u(x,y)M(x,y)dx + u(x,y)N(x,y)dy=0$为恰当形式,即可通过求解小学奥数中的乘法公式,求出积分因子$u(x,y)$。进而可以求出某个新方程,若该新方程为全微分方程,则原方程也为全微分方程。3、求解全微分方程通解 假如已经通过上...

全微分方程通解
全微分方程是指形如 \\(\\frac{{dy}}{{dx}} = M(x, y)dx + N(x, y)dy\\) 的方程,其中 \\(M(x, y)\\) 和 \\(N(x, y)\\) 是关于 \\(x\\) 和 \\(y\\) 的函数。要求得全微分方程的通解,可以使用积分的方法。首先,观察方程中的系数函数 \\(M(x, y)\\) 和 \\(N(x, y)\\) ...

求全微分方程的通解
取平行于坐标轴的折线路径,如:取起点(0,0),先平行于x轴到(x,0),再从(x,0)沿平行于y轴到(x,y)则U(x,y)=∫P(x,0)dx (x的下限为0,上限为x)+∫Q(x,y)dy (y的下限为0,上限为y)

如何求解微分方程的通解?
第一种:由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是:y=C1cos2x+C2sin2x-xsin2x。第二种:通解是一个解集……包含了所有符合这个方程的解;n阶微分方程就带有n个常数,与是否线性无关;通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2...

如何求微分方程的通解?
微分方程求通解的方法:1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*e^(λ1*x)+C2*e^(λ2*x)。2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*e^(λ1*x)。3、△=p^2-4q<0,特征方程具有共轭复根α+-(i...

高等数学微分方程求通解,速答
先求齐次方程dy\/dx=y\/x dy\/y=dx\/x ln|y|=ln|x|+ln|C| 即y=Cx 由常数变易法,令y=C(x)x 则y'=C'(x)x+C(x)带入原方程dy\/dx=y\/x+x²得 C'(x)=x 则C(x)=x²\/2+C 故原方程的通解为y=x(x²\/2+C)即y=x^3\/2+Cx ...

高等数学求微分方程的通解
1, dy\/dx=y\/x+e^(y\/x) 为齐次微分方程,令 u=y\/x, 则 y=xu, 原方程化为 u+xdu\/dx=u+e^u,e(-u)du=dx\/x, 解得 -e^(-u)=lnx-C, 即通解为 e^(-y\/x)+lnx=C。2. x^2*dy\/dx+2xy=5y^3 即 d(yx^2)\/dx=5y^3, 令 u=yx^2, 则 y=u\/x^2, 原...

如何求解微分方程的通解?
求解微分方程的通解可以使用多种方法,以下是一些常见的方法:1. 变量分离法:将微分方程中的变量分开,使得可以将方程两边分别积分,并得到通解。2. 齐次方程法:对于齐次线性微分方程,可以通过分离变量并进行变量代换,将方程转化为可直接积分的形式,从而得到通解。3. 常数变易法:对于某些特殊的微分方...

相似回答