什么是轮换对称性

如题所述

第1个回答  2022-10-12
问题一:什么叫“轮换对称性”? 比如告诉你浮关于x,y,z的函数,但你发现其中的x,y,z互相交换并不改变函数的值,如x+y+z=1.则x,y,z具有轮换对称性,这样解题的时候就可以利用,比如让你求x,你就可以写成1/3倍的(x+y+z)

问题二:什么是轮换对称法 在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式. 二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解. 对称式的因式分解 在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式. 例7分解因式x4+(x+y)4+y4 分析 这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解. 解 ∵x4+y4 =(x+y)4-4x3y-6x2y2-4xy2 =(x+y)4-4xy(x+y)2+2x2y2. ∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4 =2(x+y)4-4xy(x+y)2+2x2y2 =2[(x+y)4-2xy(x+y)2+(xy)2] =2[(x+y)2-xy]2-2(x2+y2+xy)2, 例8分解因式a2(b-c)+b2(c-a)+c2(a-b). 此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0. 因式定理 如果=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式). 如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2). 证明 设f(x)=anxn+an-1xn-1+…+a1x+a0, 若f(a)=0,则 f(x)=f(x)-f(a) =(anxn+an-1xn-1+…+a1x+a0) =(anan+an-1an-1+…+a1a+a0) =an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a), 由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a), ∴(x-a)|f(x), 对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理. 现在我们用因式定理来解例8. 解 这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1. ∴a2(b-c)+b2(c-a)+c2(a-b) =-(a-b)(b-c)(c-a). 例9分解因式a3(b-c)+b3(c-a)+c3(a-b). 分析 这是一个关于a、b、c的四次齐......>>

问题三:求教大神!二重积分轮换对称性是什么意思?不懂啊!谢谢了 这个轮换对称性本质就是x=y,即将所有x换成y,y换成x,所有相关的方程与换之前的方程一模一样。如果在二重积分中出现,一般会用到函数奇偶性或是积分区间的对称性:在拉格朗日法求最值时也会有这种情况,,这时候只需添加方程x=y便能迅速求解极值点。这好像是张宇那货书上的名词吧?

什么叫“轮换对称性”?
轮换对称性是指一个系统或结构在经历某种特定的轮换变换后,其性质、形态或结构仍然保持不变的特性。1. 基本定义:轮换对称性是一种特殊的对称性。对称性通常描述的是某种形状、结构或系统在某种操作下,其整体形态或性质维持不变的特点。具体到轮换对称性,它涉及的是一种轮换操作。所谓的轮换是一种特...

轮换对称性
轮换对称性(轮换对称性)一般指积分轮换对称性。积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。积分轮换对称性主要分为二重积分、三重积分、第一型曲线积分、第二型曲线积分等。积分轮换对称...

如何理解轮换对称性
轮换对称性,又称为循环对称性,是数学中一种重要的对称性概念。其主要涉及对象如排列或循环置换。可以从以下几个方面理解轮换对称性:一、基本定义:轮换对称性描述的是在一个集合的元素进行排列时,当进行循环移位后,整个排列保持不变的性质。例如,对于集合{a, b, c},排列为abc或bca等,都可以通...

什么是轮换对称
轮换对称性是数学领域中一个关键概念,尤其在群论和组合数学中扮演重要角色。它描述了对象或序列在特定交换操作下保持不变的性质。若一个集合中元素通过交换,其基本结构或特性未改变,则认为该集合具有轮换对称性。例如,对于一个n个元素的集合,通过交换前i个元素得到的新集合,若其特性不变,则表明具有...

问一下轮换对称性
轮换对称性是一个数学概念,简单而言,当一组元素中的任意两个元素进行交换后,整个集合的性质不发生改变,此时称这组元素具有轮换对称性。以三个字母x,y,z为例,如果我们进行x用y代换,y用z代换,z用x代换,如果代换后的式子与原式子相同,那么可以说明x,y,z三个字母具有轮换对称性。以x^2+y...

什么是坐标的轮换对称性
回答:轮换对称性就是指把几个变量依次替换后不改变原结果,如x,y,z变为y,z,x或者z,x,y后结果不变。平移变换只是改变坐标系,当然不会改变积分结果了。就跟改变数轴零点不会改变两点间的距离一样。

轮换对称性和关于y= x对称的区别?
轮换对称性是指一个函数在经过替换后仍然保持不变的特性。具体来说,如果一个函数f(x)在经过替换后仍然等于f(x),则称该函数具有轮换对称性。例如,函数f(x)=x^2在经过替换后仍然等于f(x),因此它具有轮换对称性。而关于y=x对称是指一个函数图像与y=x直线对称的特性。具体来说,如果一...

二重积分的对称性定理有哪几种类型?
轮换对称性是指,如果函数f(x,y)满足条件f(y,x) = f(x,y),那么在D上的二重积分等于在D关于直线y=x对称的区域D'上的二重积分。也就是说,如果我们把D中的x和y互换,得到的区域D'和原来的区域D关于直线y=x对称,那么函数在这两个区域上的积分是相等的。这些对称性定理的应用在于简化了二重...

什么是轮换对称性
可以理解为几分区域关于y=x对称也就是对换的任两个不改变积分区域的形状就可以用轮换对称性例如对(X^2+Y^2)积分 用对称性就可以些成 对X^2或是Y^2几分的一半

如何理解轮换对称性
轮换对称性,本质上是关于坐标轴的变换规则,即当函数在积分区域的表达保持不变时,坐标轴的交换不会影响积分值。对于二元函数的二维积分,不论积分区域D是否关于y=x对称,都可以通过同时交换积分函数和区域的x与y进行操作。如果变换后的区域D'与D关于y=x对称,那么这两个区域的积分结果相等,这为简化...

相似回答
大家正在搜