如图,有一个二级台阶,每一级的长宽高分别是60CM,45cm 27cm A和B分别是这两歌台阶的相对端点

A点上有一只蚂蚁想到B点去吃可口的食物,若蚂蚁平均每秒走0.8CM,则蚂蚁沿着台阶从A到B至少需要多长时间

第1个回答  2013-10-07
先把图展开,就是4个平面长方形,可以用勾股定理算的算出来斜边,在乘以0.8就ok了

他是一个二级台阶,每一级的长、宽、高分别为60cm、30cm、10cm,A和B...
这种题要把台阶表面展开铺平,化空间为平面,再利用勾股定理往往能解决。

如图是一个二级台阶每一级长宽高分别为60,30,10A和B是台阶的相对点A点...
这个二级台阶的展开图为矩形,矩形的长=10+30+10+30=80,宽=60;连接AB两点的距离最短,可用勾股定理求出。若A和B是台阶上最远的2个的相对点,则A,B在展开图的对角上,AB²=80²+60²=10000=100²AB=100.

如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A...
所以在△ABC中 AB=根号下{20^2+[(2+3)×3]^2}=25

如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个...
解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.

如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A...
解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25dm.

客厅与卧室有45CM的高度差,二级台阶需要做栏杆吗?
不需要做。 如果考虑今后的BB,可以在边沿放置一个或两个长形的花栅,内装花草美化室内,而这个障碍就挡住BB的了。 这个花栅可用木条做成约800长,高200,宽250。放置若干塑料盆栽的花。 希望我的回答能够对你有所帮助。希望采纳

如图,是一个三级阶梯,它的每一级长,宽,高分别为20DM,3DM,2DM,是这个台...
将三级台阶展开为一个平面,连接AB,即为最短路径 AB²=20²+[3(3+2)]²=625 ∴AB=25dm

如下图所示,这是一个楼梯的侧面图,已知每级台阶宽3分米,高2分米,这个...
如图

一阶梯如图所示,其中每级台阶的高度和宽度都是0.4 m,一小球以水平速度v...
A 根据平抛运动有 , ,根据几何关系有: ,得 ,如果落到4台阶有: ,代入 ,得 m\/s<v≤2 m\/s,A正确。

如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A...
三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x 2 =2 2 +[(0.2+0.3)×3] 2 =2.5 2 ,解得x=2.5.

相似回答