已知数列{an}的前n项和是Sn,且Sn=2an-n(n∈N*)①证明:数列{an+1}是等...
取n=1,可知,S1=a1=2a1-1,知a1=1,即an+1=2*2^(n-1)=2^n,可知an=2^n-1 (2)由(1)知,a[n+1]-an=2^n,而 an+1=2^n,即有an+1=a[n+1]-an 故bn=(a[n+1]-an)\/(an×a[n-1])=1\/an - 1\/a[n+1]所以{bn}的前n项和,b1+b2+...+bn=1\/a1-1\/a2+1...
已知数列{an}的前n项和是Sn,且Sn=2an-n(n∈N*)①证明:数列{an+1}是等...
a_n-2a_(n-1)-1=0 a_n+1=2[a_(n-1)+1]所以a_n+1是等比数列公比为2 令n=1得a_1=2a_1-1 a_1=1 (2)a_n+1=(a_1+1)2^(n-1)=2^n ,a_n=2^n-1 b_n=(2^n)\/(2^n-1)*(2^(n+1)-1)=1\/2^n-1\/2^(n+1)=1\/2^(n+1)数列{bn}的前n项和T_n=[1...
...为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+1}为等比数列,并求数...
解答:(1)证明:当n=1时,2a1=a1+1,∴a1=1.∵2an=Sn+n,n∈N*,∴2an-1=Sn-1+n-1,n≥2,两式相减得an=2an-1+1,n≥2,即an+1=2(an-1+1),n≥2,∴数列{an+1}为以2为首项,2为公比的等比数列,∴an+1=2n,∴an=2n-1,n∈N*;(2)解:bn=(2n+1)a...
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*)(Ⅰ)求a1,a2,a3的...
(I)∵Sn=2an-n,当n=1时,由S1=2a1-1,可得a1=1当n=2时,由S2=a1+a2=2a2-2,可得a2=3当n=3时,由S3=a1+a2+a3=2a3-3,可得a3=7证明:(II)∵Sn=2an-n∴Sn-1=2an-1-(n-1)两式相减可得,an=2an-1+1,a1+1=2∴an+1=2(an?1+1)所以{an+1}是以2为首项,...
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+).(1)求数列{an}的通项...
①当n≥2时,Sn-1=2an-1-(n-1) ②②-①得an=2an-1+1,∴an+1=2(an-1+1)又∵a1=2a1-1,∴a1=1∴数列{an+1}是以2为首项,2为公比的等比数列,∴an+1=2n∴an=2n-1由于a1=1也适合上式,∴an=2n-1(n∈N+)(2)∵点P(bn,bn+1)在直线x-y+2=0上,∴bn...
已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等 ...
解答:证明:(1)n=1时,a1=4;n≥2时,an=Sn-Sn-1,可得an=2an-1+2n,∴an2n-an?12n?1=1,∴数列{an2n}是首项为2,公差为1的等差数列,∴an2n=n+1,∴an=(n+1)?2n;(Ⅱ)bn=an4n=(n+1)?2-n,∴Tn=2?12+3?122+…+(n+1)?12n,∴12Tn=2?122+…+n?12...
已知数列{an}的前n项和为sn,满足an+sn=2n ① 证明∶数列{an-2}为等比...
∴sn=2n-an 当n=1时,a1+s1=2,则a1=1 当n大于或等于2时,则 an=sn-s(n-1)=2n-an-2(n-1)+a(n-1)=2+a(n-1)-an ∴2an=a(n-1)+2 设数列{an+d}为等比数列,则 2(an+d)=a(n-1)+d ∴2an=a(n-1)-d ∴d= -2 ∴数列{an-2}为等比数列,且公比为1\/2 ∴...
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn(n∈N*).(I)证明数列{ann...
(Ⅰ)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),两式相减得nan+1-(n-1)an=2an,∴nan+1=(n+1)an,即an+1n+1=ann(n≥2),由a1=1,可得a2=2,从而对任意 n∈N*,an+1n+1=ann,又a11=1≠0,即{ann}是首项公比均为1的数列,所以ann=1×1n-1=1,故数列{an}...
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).(1)证明...
即an=2an-1(n≥2),且a1=1,故{an}是以1为首项,以2为公比的等比数列 (2)由(1)得an=2n-1(n∈N*).∴bn=2n-1•n 设Tn=1×20+2×21+3×22+…+n×2n-1① 2Tn=1×2+2×22+3×23+…+n×2n② ①-②:-Tn=1+2+22+23+…+2n-1-n×2n=1×(1-2...
已知数列{an}的前n项和为Sn,a2=4,且满足2Sn=n(an+1)(n∈N*).(1)求证...
解答:(1)证明:由题意可知2Sn=nan+n当n≥2时,2Sn-1=(n-1)an-1+n-1相减得2an=nan-(n-1)an-1+1即(n-2)an-(n-1)an-1+1=0 ①所以(n-3)an-1-(n-2)an-2+1=0 ②由①-②得(n-2)an-2(n-2)an-1+(n-2)an-2=0(n≥3) 即an-2an-1+...