计算1/1+2+1/1+2+3+.....1/1+2+3......100

如题所述

1/1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+…1/(1+2+3+4+5+…n)

=2{1/(1×2)+1/(2×3)+…+1/[n(n+1)]}

=2[1-1/2+1/2-1/3+…+1/n-1/(n+1)]

=2[1-1/(n+1)]

=2n/(n+1)

将100代入得到
式子=200/101追问

1/(1+2)+1/(1+2+3)+.....1/(1+2+3....100).

追答

1+2=2*3/2
1+2+3=3*4/2
......
1+2+3+4+......+100=100*101/2
所以
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+......+100)
=2(1/2 -1/3) +2(1/3-1/4)+......+2(1/100-1/101)
=2*(1/2-1/101)
=99/101

温馨提示:内容为网友见解,仅供参考
第1个回答  2011-11-12
she f(n)=1+2+.......+n
即f(n)=(1+n)/2
由题知道s=f(1)+f(2)+....f(n)-1
s=(n/2+1/2+2/2+......n/2)-1
s=n/2+(1+n)/4=(3n-3)/4
希望对你有所帮助
s(100)=297/4

计算1\/1+2+1\/1+2+3+...1\/1+2+3...100
=2[1-1\/2+1\/2-1\/3+…+1\/n-1\/(n+1)]=2[1-1\/(n+1)]=2n\/(n+1)将100代入得到 式子=200\/101

计算1\/1+2+1\/1+2+3+...+1\/1+2+3+...+100 请给予准确答案,谢谢各位了
1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+···+1\/(1+2+3···+100)=1\/(3×2\/2)+1\/(4×3\/2)+1\/(5×4\/2)+···+1\/(101×100\/2)=2×[1\/(2×3)+1\/(3×4)+1\/(4×5)+···+1\/(100×101)]=2×[(1\/2-1\/3)+...

1+1\/1+2+2\/1+2+3+3\/1+2+3+4...99\/1+2+3+...100怎么计算
=2\/1*2+2\/2*3+2\/3*4+...+2\/100*101 =2x(1\/1*2+1\/2*3+1\/3*4+...+1\/100*101)=2x(1-1\/2+1\/2-1\/3+...+1\/100-1\/101)=2x(1-1\/101)=200\/101

1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4...100)
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 分数计算方法:1...

计算1+(1\/1+2)+(1\/1+2+3)+……+(1\/1+2+3+...+100)
先算通项 An=2\/n(n+1)=2(1\/n-1\/n+1)Sn=2(1-1\/2+1\/2-1\/3...+1\/n-1\/n+1)=2n\/n+1 又n=100. Sn=200\/101

计算1 + 1\/1+2 + 1\/1+2+3 + 1\/1+2+3+4 + ... + 1\/1+2+3+...+20
由公式1+2+3+...+n=n(n+1)\/2可知,以上数列的一般项为2\/[n(n+1)]=2*[1\/n-1\/(n+1)],所以 原式=2*(1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/20-1\/21)=2*(1-1\/21)=40\/21.

计算巧算1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+……+100...
所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1\/3;1\/(3*4)=1\/3-1\/4;...

1+一加二分之一+一加二加三分之一+一加二加三+...100分之一 简便计算...
1\/(1+2+3+...n)=1\/[n(1+n)\/2]=2\/n(n+1)=2(1\/n-1\/(n+1))故原式=2(1-1\/2)+2(1\/2-1\/3)+2(1\/3-1\/4)+...+2(1\/100-1\/101)=2(1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/100-1\/101)=2(1-1\/101)=200\/101 ...

数学计算。1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3+……+1...
因为1=1*2\/2 1+2=2*3\/2 ...1+2+3+4+...2003=2003*2004\/2 所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+4+...2003)=2(1\/1 - 1\/2)+2(1\/2 -1\/3) +2(1\/3-1\/4)+...+2(1\/2003-1\/2004)=2-2\/2004 =2-1\/1002 =2003\/1002 ...

...1+2+3分之1 + 1+2+3+4分之1…… + 1+2+3+4…+100分之1 简便计算...
所以 1\/(1+2)=2*(1\/2-1\/3)……1\/(1+2+……+100)=2*(1\/100-1\/101)而 1=2*(1-1\/2)所以 1+1\/(1+2)+1\/(1+2+3)+(1\/1+2+3+4)+...+1\/(1+2+3+...+100)=2*[(1-1\/2)+(1\/2-1\/3)+……+(1\/100-1\/101)]=2*(1-1\/101)=200\/101 ...

相似回答