若cos(π/4+x)=3/5 17π/12<x<7π/4求(sin2x+2cos平方x)/(1-tanx)的值

如题所述

17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75追问

不对吧 是cos²x 不是sin²x 而且是cos(π/4+x)不是cos(x-π/4)你再看看 别玩复制粘贴 OK?

追答

cos(π/4+x)
=cosπ/4cosx-sinπ/4sinx
=√2/2(cosx-sinx)
=3/5
cosx-sinx=3√2/5 …………(1)
(cosx-sinx)^2=(cosx)^2+(sinx)^2-2sinxcosx=1-2sinxcosx=18/25
2sinxcosx=1-18/25=7/25
所以sin2x=2sinxcosx=7/25

由(1)得
sinx=cosx-3√2/5
两边平方
sin²x=1-cos²x=cos²x-6√2/5*cosx+18/25
2cos²x-6√2/5*cosx-7/25=0
50cos²x-30√2cosx-7=0
cosx=(3√2±4√2)/10
cosx=-√2/10或7√2/10

17π/12<x<7π/4
增函数
所以cos17π/12<cosx<cos7π/4
(√2-√6)/4<cosx<√2/2
所以cosx=-√2/10
sinx=cosx-3√2/5=-7√2/10
tanx=sinx/cosx=7

(sin2x+2cos平方x)/(1-tanx)
=(7/25+1/25)/(1-7)
= -4/75

温馨提示:内容为网友见解,仅供参考
无其他回答

若cos(π\/4+x)=3\/5 17π\/12<x<7π\/4求(sin2x+2cos平方x)\/(1-tanx...
17π\/12<x<7π\/4,得5π\/3<x+π\/4<2π cos(x-π\/4)=cos[(x+π\/4)-π\/2]=sin(x+π\/4)=-√[1-sin²(x+π\/4)]=-√[1-(3\/5)²]=-4\/5 sin(2x)=-cos(2x+π\/2)=-cos[2(x+π\/4)]=1-2cos²(x+π\/4)=1-2•(3\/5)²=7\/2...

若cos(π\/4+x)=3\/5,17π\/12<x <7π\/4,求(sin2x+2cosx)\/1-tanx的值
osπ\/4cosx-sinπ\/4sinx=3\/5 cosx-sinx=3√2\/5 平方 cosx+sinx-2sinxcosx=18\/25 1-2sinxcosx=18\/25 sinxcosx=7\/50 sinx+cosx=√2sin(x+π\/4) 5π\/4<x+π\/4<2π 第四象限 所以sinx+cosx<0 (sinx+cosx)=sinx+cosx+2sinxcosx=1+7\/25=32\/25 sinx+cosx=-4√2\/5 原式=...

已知cos(π\/4 +x)=3\/5,17π\/12<x<7π\/4,求(sin2x+2sin�0�5x)\/...
您好:解答如下17π\/12<x<7π\/4,所以5π\/3<π\/4 +x<2π得到cos(π\/4 +x)=3\/5,sin(π\/4 +x)=-4\/5cosx=cos(π\/4 +x-π\/4 ) =cos(π\/4 +x)cosπ\/4+sin(π\/4 +x)sinπ\/4 =3\/5×√2\/2+(-4\/5)×√2\/2 =-√2\/10因为17π\/12<x<7π\/4,所以sin...

cos(π\/4+x)=3\/5,17π\/12<x<7π\/4,求sin2x+2sin^2x\/1-tanx
sin2x=-cos[π\/2+2x]=-cos[2(x+π\/4)]=-[2cos²(π\/4+x)-1]=7\/25 因17π\/12<x<7π\/4,则17π\/6<2x<7π\/2,2x在二、三象限内,则cos2x=-24\/25 则:原式=[7\/25][1+7\/25]\/[-24\/25]=-28\/3 ...

若cos(π\/4+x)=3\/5,17\/12π<x<7\/4π,求(sin2x+2sinx)\/(1-
(x+π\/4)=1-2•(3\/5)²=7\/25 [sin(2x)+2sin²x]\/(1-tanx)=2(sinxcosx+sin²x)\/(1-sinx\/cosx)=2(cosx+sinx)\/(1\/sinx-1\/cosx)=2(cosx+sinx)sinxcosx\/(cosx-sinx)=cos(x-π\/4)sin(2x)\/cos(x+π\/4)=-4\/5•7\/25\/(3\/5)=-28\/75 ...

cos(π\/4+X)=3\/5,17π\/12<X<7π\/4,[sin2X+2(sinX)^2]\/(1-tanX)
COSX-SinX=3\/5*2^0.5;cosX*sinX=7\/50;CosX+sinX=-4\/5*2^0.5,[sin2X+2(sinX)^2]\/(1-tanX)=2[sinxcosx(cosx+sinx)]\/cosx-sinx=-28\/75 麻烦采纳,谢谢!

已知cos(π\/4+x)=3\/5,17π\/12<x<7π\/4,求(sin2x+2sin²x)\/1-
解 ∴[sin(2x)+2(sinx)^2]\/(1-tanx)=[2sinxcosx+2(sinx)^2]\/(1-sinx\/cosx)=[2sinx(cosx)^2+2(sinx)^2(cosx)]\/(cosx-sinx)=2sinxcosx(sinx+cosx)\/(cosx-sinx)=sin2x(sin(x+π\/4))\/(cos(x+π\/4)=-cos(π\/2+2x)(sin(x+π\/4))\/(cos(x+π\/4)=-(2cos...

cos(π\/4+x)=3\/5,17π\/12<x<7π\/4,求sin2x+2sin^2x\/1-tan^2x
π\/4+x)- sin π\/4*sin[(π\/4+x)]= 1\/2 (2^(1\/2)* (3\/5) - 1\/2 (2^(1\/2)* (-4\/5) = 7* 2^(1\/2)\/10 = cos (π\/2+x) = - sin x, sin x= -7* 2^(1\/2)\/10, tan x = 1\/7, finally, answer is :(7\/25) + 2* (49\/625)\/ [1- (1\/49)]

cos(pai\/4 x)=3\/5,17pai\/12x7pai\/4,求(sin2x 2sin^x)\/(1-tanx)
考虑等式中涉及的变量与角度之间的关系,通过平方操作,可以得到 1 - 2sin(x)cos(x) = 18\/25。进一步处理,得到 sin(x)cos(x) = 7\/50。注意到,这一结果暗示了 sin(x) 和 cos(x) 在第四象限中的值。通过平方关系的代入,我们可以得到 (sin(x)cos(x))^2 = sin^2(x)cos^2(x) ...

已知cos(π\/4+x)=3\/5,17π\/12<x<7π\/4,求sin2x+2sin^2x\/1-tanx
(x+π\/4)=1-2•(3\/5)²=7\/25 [sin(2x)+2sin²x]\/(1-tanx)=2(sinxcosx+sin²x)\/(1-sinx\/cosx)=2(cosx+sinx)\/(1\/sinx-1\/cosx)=2(cosx+sinx)sinxcosx\/(cosx-sinx)=cos(x-π\/4)sin(2x)\/cos(x+π\/4)=-4\/5•7\/25\/(3\/5)=-28\/75 ...

相似回答