用放缩法证明: 1/2-1/(n+1)<1/(2^2)+1/(3^3)+````+1/(n^2)<(n-1)/n (n=2,3,````)

在线等待..

1/(2*3)<1/(2*2)<1/(2*1)
1/(3*4)<1/(3*3)<1/(3*2)
.
.
.
1/n(n+1)<1/(n*n)<1/n(n-1)

因为1/(2*3)=1/2-1/3, 1/(2*1)=1-1/2
1/(3*4)=1/3-1/4, 1/(3*2)=1/2-1/3
.
.
.
1/n(n+1)=1/n-1/(n+1), 1/n(n-1)=1/(n-1)-1/n

所以1/2-1/3<1/(2^2)<1-1/2
1/3-1/4<1/(3^2)<1/2-1/3
.
.
.
1/n-1/(n+1)<1/(n^2)<1/(n-1)-1/n

全部相加,得1/2-1/(n+1)<1/(2^2)+1/(3^3)+````+1/(n^2)<1-1/n

因为1-1/n=(n-1)/n
所以1/2-1/(n+1)<1/(2^2)+1/(3^3)+````+1/(n^2)<(n-1)/n (n=2,3,````)
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-03-01
我来啦~呵呵
这个呢,这样子,
1/(2*(2+1))<1/(2^2)<1/(2^2-1),
用第一个不等关系,再用裂项相消法,可以证明左边的不等式,同理,第二个证右边~
明白了吧~
昨天我睡的早,今天早上做高考前的检查呢,所以不好意思哈本回答被提问者采纳

用放缩法证明: 1\/2-1\/(n+1)<1\/(2^2)+1\/(3^3)+```+1\/(n^2)<(n-1)\/n...
=1\/2-1\/3+1\/3-1\/4+...+1\/n-1\/(n+1)=1\/2-1\/(n+1)右半部分 1\/(2^2)+1\/(3^2)+```+1\/(n^2)< 1\/(1*2)+1\/(2*3)+...+1\/[(n-1)n]=1-1\/2+1\/2-1\/3...+1\/(n-1)-1\/n =(n-1)\/n

用放缩发证明:1\/2-1\/(n+1)<1\/(2^2)+1\/(3^2)+…+1\/(n^2)<(n-1)\/n其 ...
1. 提示: 1\/n-1\/(n+1)=1\/[n(n+1)]<1\/n²<1\/[(n-1)n]=1\/(n-1)-1\/n 然后裂项相消 2. 提示:1\/√n=2\/(2√n)<2 \/ [√(n-1)+√n]=2[√n-√(n-1)] 然后裂项相消

用放缩法证明 1\/2 - 1\/(n+1) < 1\/(2^2) - 1\/(3^2) + …+ 1\/(n^2...
=1\/2-1\/3+1\/3-1\/4+……+1\/n-1\/(n+1)=1\/2-1\/(n+1)所以 1\/2 - 1\/(n+1) < 1\/(2^2) - 1\/(3^2) + … + 1\/(n^2)所以1\/2 - 1\/(n+1) < 1\/(2^2) - 1\/(3^2) + … + 1\/(n^2) < (n-1)\/n ...

用放缩法证明1\/2-1\/(n+1)<1\/2^2+1\/3^2+...+1\/n^2<(n-1)\/n
1\/(2^2)+1\/(3^2)+```+1\/(n^2)< 1\/(1*2)+1\/(2*3)+...+1\/[(n-1)n]=1-1\/2+1\/2-1\/3...+1\/(n-1)-1\/n =(n-1)\/n

1\/2-1\/(n+1)<1\/2^2+1\/3^2+...+1\/n^2<(n-1)\/n用放缩法证明
1\/n(n+1)<1\/n^2<1\/n(n-1) 1\/n-1\/(n+1) <1\/n^2<1\/(n-1)-1\/n 1\/2^2+1\/3^2+...+1\/n^2<(1-1\/2)+(1\/2-1\/3)+...+ 1\/(n-1)-1\/n =1-1\/n= (n-1)\/n 1\/2^2+1\/3^2+...+1\/n^2>(1\/2-1\/3)+(1\/3-1\/4)...+ 1\/n-1\/(n+1)...

若n为自然数,n大于等于2,求证1\/2-1\/(n+1)<1\/2²+1\/3²+……1\/n...
分析:采用放缩法,这是不等式证明的常用技巧!证明:∵1\/n²>1\/[n(n+1)]=1\/n-1\/(n+1)∴1\/2²+1\/3²+……1\/n²>(1\/2-1\/3)+(1\/3-1\/4)+...+[1\/n-1\/(n+1)]=1\/2-1\/(n+1)即:1\/2²+1\/3²+……1\/n²>1\/2-1\/(n+1)...

用放缩法证明1\/1^2+1\/2^2+1\/3^2+...+1\/n^2<2(n∈N+) 要详细的解
<1\/[n·(n+1)]=1\/n-1\/(n+1)所以:1\/1²+1\/2²+1\/3²+...+1\/n²<1\/1²+1\/(1·2)+1\/(2·3)+1\/(3·4)+…+1\/[n·(n+1)]=1+(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+…+[1\/n-1\/(n+1)]=1+1-1\/(n+1)=2-1\/(n+1)<2 ...

用放缩法证明1\/2<=1\/n+1+1\/2+n+……+1\/2n<1 过程详细点 急急急
1\/(n+1)+1\/(n+2)+...+1\/(2n)<1\/n+1\/n+1\/n+...+1\/n =n\/n =1 1\/(n+1)+1\/(n+2)+...+1\/(2n)≥1\/(2n)+1\/(2n)+...+1\/(2n)=n\/(2n)=1\/2 所以1\/2≤1\/(n+1)+1\/(n+2)+...+1\/(2n)<1

证明不等式1\/2⊃2;+1\/3⊃2;+…+1\/n⊃2;<n-1\/n
解法:运用放缩法:将分母依次换乘1乘以2,2乘以3,3乘以4。。。n-1乘以n,就有:原式<1\/(1×2)+1\/(2×3)+…1\/(n减1乘以 n)=1-二分之一 + (二分之一) -( 三分之一)+…+(n减一分之一)-n分之一=1-n分之一,得证。

用放缩法证明1\/(1的平方)+2\/(2的平方)+3\/(3的平方)+2...+1\/(N的平方...
2\/(√k+√k+1) < 2\/(2√k) < 2\/(√k+√k-1)Ⅲ.1\/k^2 的放缩(2)1\/k^2 < 1\/(k^2-1) = 1\/(k+1)(k-1) = (1\/2)[1\/(k-1)-1\/(k+1)]Ⅳ.1\/k^2 的放缩(3)1\/k^2 = 4\/(4k^2) < 4\/(4k^2-1) = 2[1\/(2k-1)-1\/(2k+1)]Ⅴ.变量集中法 |a+b|...

相似回答
大家正在搜