用放缩法证明: 1\/2-1\/(n+1)<1\/(2^2)+1\/(3^3)+```+1\/(n^2)<(n-1)\/n...
=1\/2-1\/3+1\/3-1\/4+...+1\/n-1\/(n+1)=1\/2-1\/(n+1)右半部分 1\/(2^2)+1\/(3^2)+```+1\/(n^2)< 1\/(1*2)+1\/(2*3)+...+1\/[(n-1)n]=1-1\/2+1\/2-1\/3...+1\/(n-1)-1\/n =(n-1)\/n
用放缩发证明:1\/2-1\/(n+1)<1\/(2^2)+1\/(3^2)+…+1\/(n^2)<(n-1)\/n其 ...
1. 提示: 1\/n-1\/(n+1)=1\/[n(n+1)]<1\/n²<1\/[(n-1)n]=1\/(n-1)-1\/n 然后裂项相消 2. 提示:1\/√n=2\/(2√n)<2 \/ [√(n-1)+√n]=2[√n-√(n-1)] 然后裂项相消
用放缩法证明 1\/2 - 1\/(n+1) < 1\/(2^2) - 1\/(3^2) + …+ 1\/(n^2...
=1\/2-1\/3+1\/3-1\/4+……+1\/n-1\/(n+1)=1\/2-1\/(n+1)所以 1\/2 - 1\/(n+1) < 1\/(2^2) - 1\/(3^2) + … + 1\/(n^2)所以1\/2 - 1\/(n+1) < 1\/(2^2) - 1\/(3^2) + … + 1\/(n^2) < (n-1)\/n ...
用放缩法证明1\/2-1\/(n+1)<1\/2^2+1\/3^2+...+1\/n^2<(n-1)\/n
1\/(2^2)+1\/(3^2)+```+1\/(n^2)< 1\/(1*2)+1\/(2*3)+...+1\/[(n-1)n]=1-1\/2+1\/2-1\/3...+1\/(n-1)-1\/n =(n-1)\/n
1\/2-1\/(n+1)<1\/2^2+1\/3^2+...+1\/n^2<(n-1)\/n用放缩法证明
1\/n(n+1)<1\/n^2<1\/n(n-1) 1\/n-1\/(n+1) <1\/n^2<1\/(n-1)-1\/n 1\/2^2+1\/3^2+...+1\/n^2<(1-1\/2)+(1\/2-1\/3)+...+ 1\/(n-1)-1\/n =1-1\/n= (n-1)\/n 1\/2^2+1\/3^2+...+1\/n^2>(1\/2-1\/3)+(1\/3-1\/4)...+ 1\/n-1\/(n+1)...
若n为自然数,n大于等于2,求证1\/2-1\/(n+1)<1\/2²+1\/3²+……1\/n...
分析:采用放缩法,这是不等式证明的常用技巧!证明:∵1\/n²>1\/[n(n+1)]=1\/n-1\/(n+1)∴1\/2²+1\/3²+……1\/n²>(1\/2-1\/3)+(1\/3-1\/4)+...+[1\/n-1\/(n+1)]=1\/2-1\/(n+1)即:1\/2²+1\/3²+……1\/n²>1\/2-1\/(n+1)...
用放缩法证明1\/1^2+1\/2^2+1\/3^2+...+1\/n^2<2(n∈N+) 要详细的解
<1\/[n·(n+1)]=1\/n-1\/(n+1)所以:1\/1²+1\/2²+1\/3²+...+1\/n²<1\/1²+1\/(1·2)+1\/(2·3)+1\/(3·4)+…+1\/[n·(n+1)]=1+(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+…+[1\/n-1\/(n+1)]=1+1-1\/(n+1)=2-1\/(n+1)<2 ...
用放缩法证明1\/2<=1\/n+1+1\/2+n+……+1\/2n<1 过程详细点 急急急
1\/(n+1)+1\/(n+2)+...+1\/(2n)<1\/n+1\/n+1\/n+...+1\/n =n\/n =1 1\/(n+1)+1\/(n+2)+...+1\/(2n)≥1\/(2n)+1\/(2n)+...+1\/(2n)=n\/(2n)=1\/2 所以1\/2≤1\/(n+1)+1\/(n+2)+...+1\/(2n)<1
证明不等式1\/2⊃2;+1\/3⊃2;+…+1\/n⊃2;<n-1\/n
解法:运用放缩法:将分母依次换乘1乘以2,2乘以3,3乘以4。。。n-1乘以n,就有:原式<1\/(1×2)+1\/(2×3)+…1\/(n减1乘以 n)=1-二分之一 + (二分之一) -( 三分之一)+…+(n减一分之一)-n分之一=1-n分之一,得证。
用放缩法证明1\/(1的平方)+2\/(2的平方)+3\/(3的平方)+2...+1\/(N的平方...
2\/(√k+√k+1) < 2\/(2√k) < 2\/(√k+√k-1)Ⅲ.1\/k^2 的放缩(2)1\/k^2 < 1\/(k^2-1) = 1\/(k+1)(k-1) = (1\/2)[1\/(k-1)-1\/(k+1)]Ⅳ.1\/k^2 的放缩(3)1\/k^2 = 4\/(4k^2) < 4\/(4k^2-1) = 2[1\/(2k-1)-1\/(2k+1)]Ⅴ.变量集中法 |a+b|...