在数1和100之间插入n个实数,使得这n+2个数构成递增的数列,将这n+2个...
3. 1, 34, 67, 100
在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
由题意,数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,由等比数列的性质,序号的和相等,则项的乘积也相等知Tn=100n+22,又an=lgTn,(n∈N*),∴an=lgTn=lg100n+22=lg10n+2=n+2故答案为an=n+2 ...
在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
解:(1)设t 1 ,t 2 ,…,t n+2 构成等比数列,其中t 1 =1,t n+2 =100,则T n =t 1 ·t 2 ·…·t n+1 ·t n+2 , ① T n =t n+2 ·t n+1 ·…·t 2 ·t 1 ,② ①×②并用利t i t n+3-i =t 1 t n+2 =10 2 (1≤i≤n+2),得T n 2 ...
在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
= -1+[tan(n+2) - tan(n+3)] \/ tan[(n+2)-(n+3)]= -1+[tan(n+2) - tan(n+3)] \/ tan(-1) 【tan(-1)为常数】所以,{bn}的和Sn满足 Sn=b1+b2+b3+……+bn = -n + [tan(3)-tan(4)+tan(4)-tan(5)+……+tan(n+2) - tan(n+3)] \/ tan(-1)= -n ...
...数列问题 在1和100之间插入N个实数,使得N+2个数构成递增的等比数列...
则b1=1,b(n+2)=b1*q^(n+1)=100,q^(n+1)=100 Tn=b1*b2*b3*...*b(n+2)=b1^(n+2)*q^(1+2+3+...+(n+1))=q^[(n+1)(n+2)\/2]An=lgTn=lgq^[(n+1)(n+2)\/2]=(n+2)\/2*lgq^(n+1)=(n+2)\/2*lg100=(n+2)\/2*2=n+2 数列{An}的前N项和Sn=n*[...
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
解:设数列为{bn},公比为q,b1=1,b(n+2)=2 2=1·q^(n+1)q^(n+1)=2 An=b1·b2·...·b(n+2)=[b1^(n+2)]·q^[1+2+...+(n+1)]=1·q^[(n+1)(n+2)\/2]=[q^(n+1)]^[(n+2)\/2]=2^[(n+2)\/2]an=log2(An)=log2[2^((n+2)\/2)]=(n+2)\/2=...
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
= 2.q^[(n+1)n\/2]= 2. 2^(n\/2)= 2^[(n+2)\/2]an = log<2>An = (n+2)\/2 Sn = a1+a2+...+an = (1\/4)n(n+5)(2)tan(a2n).tan(a(2n+2))=tan(n+1).tan(n+2)= [tan(n+2) - tan(n+1)]\/ tan1 - 1 Tn=tana2×tana4+tana4×tana6+...+tan...
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
解:An=(1×2)^[(n+2)\/2]=2^[(n+2)\/2]=2^(1+n\/2)=2*2^(n\/2)=2*(√2)^n (1)Sn=A1+A2+……+An=2√2*[1-(√2)^n]\/(1-√2)=2(2+√2)*[(√2)^n-1](2)an=log2An=log22^(1+n\/2)=1+n\/2 tana2n=tan(n+1)则 tana2n×tana(2n+2)=tan(n+1)ta...
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
(1)根据题意,n+2个数构成递增的等比数列,设为b 1 ,b 2 ,b 3 ,…,b n+2 ,其中b 1 =1,b n+2 =2,可得A n =b 1 ?b 2 ?…?b n+1 ?b n+2 ,…①;A n =b n+2 ?b n+1 ?…?b 2 ?b 1 ,…②由等比数列的性质,得b 1 ?b n+2 =b 2 ?b n+1 ...
...数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...
【俊狼猎英】团队为您解答~没看明白你写的三个式子是什么意思 设原数列是1,a1,a2,……,an,2,公比为q An=1*a1*a2*……*an*2=2*q^[n(n+1)\/2]容易得到q^(n+1)=2 因此An=2*2^(n\/2)=2^[(n+2)\/2]