1/1+1/(1+2)+1/(1+2+3)+.....+1/(1+2+3....100)

如题所述

第1个回答  2015-05-04
裂项法:
1/1+1/(1+2)+1/(1+2+3)+.....+1/(1+2+3....100)
=2/1x2+2/2x3+2/3x4+……+2/100x101
=2x(1-1/2+1/2-1/3+1/3-1/4+……+1/100-1/101)
=2x(1-1/101)
=2-2/101
=1又99/101本回答被网友采纳

1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+3+...10)=
你应该知道1+2+3+……+50,这种题怎么算吧,公式:(第一项+最后一项)*项数\/2 因此1+2+3+……+50=(1+50)*50\/2 那么1\/(1+2+3+...+50)=1\/【(1+50)*50\/2】,简化为,1\/(1+2+3+...+50)=2*1\/(51*50)1\/(1+2+3+...+50)=2*(1\/50-1\/51),同理 1\/(1...

1+1\/(1+2)+1\/(1+2+3)+…+1\/(1+2+3+…100)=
1+2+3+……+100=100*101\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1...

计算1\/1+1\/(1+2)+1\/(1+2+3)+...+1\/(1+2+...+n)的值,n由用户输入不知道哪...
for(i=1;i<=n;i++){ summ=0;\/\/这里加这个,每一次i的累加和要重置为0,不然下一个数的分母就多加了前一个数;for(j=1;j<=i;j++){ summ+=j;} m=1.0\/summ;sum+=m;}

1+1\/1+2+1\/1+2+3+……+1\/1+2+3+……+100
所以1+1\/1+2+1\/1+2+3+……+1\/1+2+3+……+100 =2*[(1\/1-1\/2)+(1\/2-1\/3)+……+(1\/100-1\/101)]=2*(1\/1-1\/101)=200\/101

计算巧算1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……1\/(1+2+3+……+100...
所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(100*101)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(4*5)+……+1\/(100*101)〕因为:1\/(2*3)=1\/2-1\/3;1\/(3*4)=1\/3-1\/4;...

c语言编写。计算1+1\/(1+2)+1\/(1+2+3)+...+1\/( 1+2+3+...
int n,i,j,sum=0;printf("请你输入n的值:");scanf("%d",&n);\/\/由键盘输入n的值 for(i=n;i>0;i--)\/\/控制数列项数 { for(j=1;j<=n-i+1;j++)\/\/控制每一个项包含的数字的数量 sum+=j;\/\/计算前n项的和 } printf("1+1\/(1+2)+...+(1+2+...+%d))=%d",n,sum)...

1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)等于几?
1+2+3+……+n=n(n+1)\/2 1\/(1+2+3+……+n)=2\/[n(n+1)]=2[1\/n-1\/(n+1)]所以1+1\/(1+2)+1\/(1+2+3)+···1\/(1+2+3+···+100)=1+2*[(1\/2-1\/3)+(1\/3-1\/4)+……+(1\/100-1\/101)]=1+2*(1\/2-1\/101)=2-2\/101 =200\/101 ...

奥数题1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……+1\/1+2+3+4+5+……100
推导过程:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+……+1\/(1+2+3……+n)= 1+1\/[(1+2)×2÷2]+1\/[(1+3)×3÷2]+……+1\/[(1+n)×n÷2]——① = 2\/2+2\/(1+2)×2+2\/(1+3)×3+……+2\/(1+n)×n——② = 2×[1\/2+1\/2-1\/3+1\/3-1\/4+……+1...

1+1\/(1+2)+1\/(1+2+3)...1\/(1+2+3+4...100)
如下:1+2+3+...+n=n(n+1)\/2 1\/(1+2+3+...+n)=2\/n(n+1)=2[1\/n-1\/(n+1)]1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=2[(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/100-1\/101)]=2(1-1\/101)=200\/101 分数计算方法:...

初一数学题1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100...
1\/(1+2+3+4)=1\/10=2*(1\/4-1\/5)...同理 1\/(1+2+3+...+100)=1\/5050=2*(1\/100-1\/101)所以 1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2*【(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)...+(1\/100-1\/101)】=1+2*【1\/2-1...

相似回答
大家正在搜