设z=u/v,u=e^x siny,v=e^-x cosy,求δz/δx,δz/δy

如题所述


如图,链式法则即可

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-09-13
δz/δx = ((δu/δx)v - uδv/δx)/v^2 =[e^xsiny *e^(-x)cosy +e^xsinye^(-x)cosy))/e^(-2x)(cosy)^2
=2e^(2x)siny/cosy

δz/δy = ((δu/δy)v - uδv/δy)/v^2 =[e^xcosy e^(-x)cosy +e^xsiny e^(-x)siny]/e^(-2x)(cosy)^2
=e^(2x)(secy)^2追问

麻烦可以手写一下吗?谢谢

追答

不可以,都这样了还不自己看

本回答被提问者和网友采纳
第2个回答  2019-09-13

z=u/v, u=e^x.siny , v=e^(-x).cosy,  ∂z/∂x, ∂z/∂y

solution: 

u=e^x.siny

∂u/∂x = e^x.siny                                (1)

∂u/∂y = e^x.cosy                                (2)

v=e^(-x).cosy

∂v/∂x = -e^(-x).cosy                            (3)

∂v/∂y = -e^(-x). siny                                (4)

z=u/v

∂z/∂x 

=(1/v).∂u/∂x - (u/v^2).∂v/∂x

=[1/(e^(-x).cosy) ] .[e^x.siny]     - [ e^x.siny/( e^(-2x).(cosy)^2 ) ].  (-e^(-x).cosy  )

=e^(2x).tany + e^(2x).tany

=2e^(2x).tany

∂z/∂y 

=(1/v).∂u/∂y - (u/v^2).∂v/∂y

=[1/(e^(-x).cosy) ] .[ e^x.cosy ] - [e^x.siny/(e^(-2x).(cosy)^2) ] .[-e^(-x). siny ]

=e^(2x) + e^(2x). (tany)^2

=e^(2x) . (secy)^2

设z=u\/v,u=e^x siny,v=e^-x cosy,求δz\/δx,δz\/δy
如图,链式法则即可

...已知Z=U*V,X=e^UsinV,Y=e^UcosV,求∂Z\/∂X,∂Z\/∂Y。_百...
则∂Z\/∂U=V ∂Z\/∂V=U X=e^UsinV 则∂X\/∂U=e^UsinV=X ∂X\/∂V=e^UcosV=Y 则∂U\/∂X=1\/X ∂V\/∂X=1\/Y Y=e^UcosV 则∂Y\/∂U=e^UcosV=Y ∂Y\/∂V=-e^UsinV=-X ...

求大佬解道题。设z=sin(u v),u=xy,v=x²-y²,求∂z\/∂x,∂...
如图

设X=e^ucosv,Y=e^usinv,z=uv,求x关于z的偏导,和Y关于z的偏导。
由一阶微分形式不变性:dz=vdu+udv dX=e^u(cosvdu-sinvdv)dY=e^u(sinvdu+cosvdv)联立方程:du=(cosvdX+sinvdY)\/e^u,dv=(cosvdY-sinvdX)\/e^u,代入dz

设x=e^u乘cosv,y=e^u乘sinv,z=uv,求z对x偏导和z对y偏导
由题设条件得 u = (1\/2)ln(x^2+y^2),v = arctan(y\/x)z = uv = (1\/2)ln(x^2+y^2)arctan(y\/x)z'<x> = [x\/(x^2+y^2)]arctan(y\/x)+ (1\/2)ln(x^2+y^2)(-y\/x^2)\/[1+(y\/x)^2]= [x\/(x^2+y^2)]arctan(y\/x) - (1\/2)[y\/(x^2+y^2)]...

设z=f(x,u),u=e^(xy),求δz\/δx。两道高数题
答案如下图所示

问个设x=e^ucosv y=e^usinv z=uv 求ez\/ex 为什么这个函数显化是 z=u
u(x,v)不可以的把。。、u(x,v)。。第二个式子你自己看。。。u(y,v)了、、、

设z=(e^u)*sinv,u=xy,v=x+y,求δz\/δx和δz\/δy.
δz\/δu)*(δu\/δx)+(δz\/δv)*(δv\/δx)=((e^u)*sinv)*y+((e^u)*cosv)*1 =(e^xy)*[ysin(x+y)+cos(x+y);δz\/δy=(δz\/δu)*(δu\/δy)=(δz\/δv)*(δv\/δy)=((e^u)*sinv)*x+((e^u)*cosv)*1 =(e^xy)*[xsin(x+y)+cos(x+y);

设z=e^usinv,而u=xsiny,v=xcosy,求αz\/αx,αz\/αy!
z=e^usinv=e^(xsiny)sin(xcosy)∂z\/∂x=e^(xsiny)[(siny)]sin(xcosy)-e^(xsiny)cos(xcosy)[(cosy)=e^(xsiny)[siny)sin(xcosy)-cos(xcosy)(cosy)]同理可得:∂z\/∂y=...

设z=u^v,u=2+sin(xy),v=x-2y,求δz\/δx,δz\/δy
简单计算一下即可,答案如图所示

相似回答