定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
定积分定义:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式。该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,记为,并称函数f(x)在区间[a,b]上可积。 [1] 其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。
根据上述定义,若函数f(x)在区间[a,b]上可积分,则有n等分的特殊分法:
特别注意,根据上述表达式有,当[a,b]区间恰好为[0,1]区间时,则[0,1]区间积分表达式为:
定积分基本定理
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而...
定积分的计算方法是什么?
以x为积分变量,x∈[-a,a],dV=2π(b-x)√(a^2-x^2)dx。以y为积分变量,y∈[-a,a],dV=4πb√(a^2-y^2)dy。
定积分定义怎么计算?
定积分定义:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式 。该和式叫做积分和,设λ=...
定积分的几何意义
几何意义是被积函数与坐标轴围成的面积。x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定...
定积分计算公式是什么?
定积分的计算公式:f= @(x,y)exp(sin(x))*ln(y)。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。函数(...
定积分的基本性质
定积分的魅力在于其深刻而丰富的性质,它们揭示了函数积分的内在规律。以下是定积分的六项基本性质,每个性质都像一把钥匙,打开理解积分世界的新篇章:性质1 - 线性性: 当函数 f 和 g 在区间 [a, b] 上都可积,且常数 k 存在时,k(f+g) 在此区间也可积,并遵循简单的关系式:证明:对于...
定积分基本公式
多次应用微积中值定理
定积分定义
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定...
上下限相同,积分的和等于和的积分吗
当然是正确的 ∫(a到b) f(x) dx+∫(a到b) g(x) dx =∫(a到b) [f(x)+g(x)] dx 这是定积分的基本定理
什么是定积分?
定积分通常用符号 ∫ 表示,表示从a到b对函数f(x)进行积分。定积分的表示形式为 ∫[a, b] f(x) dx,其中a和b为积分下限和上限,f(x)为被积函数,dx表示变量。计算定积分的方法:计算定积分的方法有多种,其中最常用的方法是使用牛顿-莱布尼茨公式,也称为积分基本定理。这个定理建立了定积分...