谁有1+1=2的证明全过程啊?

想学习学习,没见过世面啊。

第1个回答  2017-11-24
1+1=2在目前的数学系统中是不能证的,它是一个经验总结的公理,其他一切定理由它推导而得。1931年哥德尔证明:一个包含公理化的算术的系统中无法证明自己的无矛盾性,也就是说任何相容的形式体系无法证明自身相容性…这就说明像算术这种最简单的公理化命题是无法证明也无法否证的。用目前的数学系统去证明1+1=2就好像用1+1=2去证明1+1=2一样,自身是无法证明自身的正确性的。
In my opinion:
根据 陈氏定理 有
6=2+2*2
即有1+2=3(等式两边同时除以2,等式依然成立)
又3=3*1(一个自然数等于它本身乘以1所得乘积)
又3*1=1+1+1(乘法加法等价性)
根据等量代换有
1+2=3=1+1+1
此时有
1+2=1+1+1(等量代换)
两边同时减去一个相同的量 有
1+2-1=1+1+1-1(等式两别同时减去一个相同的正数,等式依然成立)
两边同时消除单位1
则有 2=1+1
此时有2=1+1
所以又1+1=2(等式的对称性原理)

1+1=2的证明
1+1=2的证明:因为1+1的后继数是1的后继数的后继数,即3。所以2的后继数是3。根据皮亚诺公理:如果b、c都是自然数a的后继数,那么b=c;,可得:1+1=2。皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术...

1+1=?我要证明过程
1+1的证明:∵1+1的后继数是1的后继数的后继数,即3,∴2的后继数是3。根据皮亚诺公理④,可得:1+1=2。

1+1=2证明过程详解是什么?
1+1=2证明过程:因为1+1的后继数是1的后继数的后继数,即3。所以2的后继数是3。根据皮亚诺公理:如果b、c都是自然数a的后继数,那么b = c;,可得:1+1=2。一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以...

1+1为什么等于2?
陈景润证明1加1等于2的过程如下:1、陈景润定义了自然数的概念。他指出,自然数是从0开始,逐一往后数的整数,比如0、2、陈景润利用集合论的方法,分析了自然数的性质。他指出,每一个自然数都可以被视为一个单独的集合,这个集合只有一个元素,这个元素就是这个自然数本身。比如,数字1可以看作是一个...

1+1=2是为什么?
所以(x+y)+=(x+)+y 由此可证明1+1=2。1.出自:著名的哥德巴赫猜想。2.事件:德国数学家哥德巴赫曾经写信给欧拉,信中提出一个猜想就是,任何大于或等于6的整数,可以表示成3个素数,也就是质数的和,欧拉回信中说他相信这个论断是正确的。并指出为了解决这个问题,只要证明没一个大于2的偶数都...

华罗庚是怎么证明1+1=2的?求过程!!
“1+1=2”就是指哥德巴赫猜想,华罗庚并没有证明哥德巴赫猜想,对哥德巴赫猜想研究做出重大贡献的中国数学家是陈景润,1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所,1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。2013年5月,巴黎高等师范学院研究员...

1+1=2如何证明?
所以1+1=2这是人为定义,无需证明,也无法推翻。如果1+1不等于2,毫不客气的说,当前数学界百分之99以上的定理将全部崩塌,数学就要重新开始。不过,1+1还有一个含义,是哥德巴赫猜想的究极体形态。这个猜想目前还没有人可以证明,目前最好的证明是陈景润的1+2,所以哥德巴赫猜想1+1目前还无解,我当然也提供不了任何...

1+1=2,是谁证明出来的?
1+1是歌德巴赫猜想的一个数学表达形式,意思是任何一个充分大的偶数都可以分解为两个质数之和。比如说10=3+7,100=47+53等等 而绝不是说歌德巴赫猜想是要证明1+1=2 陈景润并没有最终证明歌德巴赫猜想,他所证明的可以表达为1+2,意思就是任何一个充分大的偶数都可以分解为一个质数与一个自然数...

计算机计算“1+1=2”的详细过程是什么?
二、然后引入最简单的【半加器】的概念,即只考虑两个1位的二进制数相加,而不考虑进位问题。1、令输入为和那么,很容易得到如下真值表:其中逻辑关系为:2、我们会发现,只需要用到与门,非门,或门三种逻辑电路即可实现,如图所示:3、至于全加器(考虑地位向高位idea进位)的一个典型电路如下图...

1+1=2是谁证明出来的?
证明理论 在一些有关数学的文章中,我们经常会看到中国数学家陈景润成功证明了“1+2=3”,而全世界没有一个数学家能够证明“1+1=2”。无论是“1+2=3”,还是“1+1=2”,都是数学公理,始终都是成立的,这都是建立在皮亚诺公理之上,证明这样的恒等式没有意义。数学家真正要证明的是哥德巴赫...

相似回答