圆周率是如何计算导出的

如题所述

第1个回答  2011-09-14
第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 圆周率
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10 (约为3.16)。 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 小学六年级关于圆周率的课本
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。[

圆周率是怎么推导出来的
1、古人计算圆周率,一般是用割圆法.即用圆的内接或外切正多边形来逼近圆的周长.阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度.这种基于几何的算法计算量大,速度慢,吃力不讨好.2、随着数学的发展,数学家们在进行数学研究时有意无意...

园周率怎么计算出来的
圆周率的计算从古至今有不同的算法,具体如下:1、阿基米德算法 古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形...

圆周率是怎么算出的啊
原理是:圆周率=圆周长÷圆直径 但是圆周长不能直接得到啊 于是就用原的内接正n边形的周长来近似圆的周长 当n一直增大时,他们就无限接近。用这个原理可以衍生出许多关于圆周率的算法 1、马青公式 π=16arctan1\/5-4arctan1\/239 2、拉马努金公式 等等 ...

圆周率怎么计算出来的
1、几何法:可以通过绘制正多边形逼近圆,然后计算正多边形的周长和直径之比来估算圆周率。2、蒙特卡洛方法:通过在一个正方形中随机撒点,并统计落入圆内的点的数量与总点数之比,再乘以4得到一个近似值。3、级数法:圆周率可以通过无限级数来计算,其中最著名的是勾股定理的级数表示式:π\/4 = 1 -...

如何计算圆周率?
1、圆周率是用圆的周长除以它的直径计算出来的。2、圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。3、圆周率用希腊字母π(读作pài)表示,是一个...

圆周率是怎样计算出来的?
”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被...

圆周率π是如何得到的?
我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。

圆周率是如何计算导出的?
1、马青公式 π=16arctan1\/5-4arctan1\/239 这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。还有很多类似于马青公式的...

圆周率是怎么来的
圆周率,是指圆的周长与直径的比值,即圆周率=圆周长÷直径,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,即圆周率=圆面积÷半径2是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正数x...

π是怎么算出来的?
π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。纵观π的计算方法,在历史上大概分为实验时期、几何法时期、解析法时期和电子计算机计算法几种。实验时期:约产于公元前1900年至1600年的一块古巴比伦...

相似回答
大家正在搜