若a+b+c=0,1/(a+1)+1/(b+2)=1/(c+3)=0,(a+1)²+(b+2)²+(c+3)²=?

A.36
B.16
C.14
D.3

答案是A
为了方便起见,设x=a+1,y=b+2,z=c+3
则x+y+z=6
1/x+1/y+1/z=0,即xy+xz+yz=0
所以所求=X平方+y平方+z平方=(x+y+z)平方-2(xy+xz+yz)=36
温馨提示:内容为网友见解,仅供参考
无其他回答

如果a+b+c=0,1\/(a+1)+1\/(b+2)+1\/(c+3)=0,那么(a+1)^2+(b+2)^2+(c+...
a+b+c=0,所以(a+1)+(b+2)+(c+3)=6,1\/a+1+1\/b+2+1\/c+3=0,得(b+2)(a+1)+(b+2)(c+3)+(a+1)(c+3)=0 那么,(a+1)的平方+(b+2)的平方+(c+3)的平方 =〔(a+1)+(b+2)+(c+3)〕^2-2〔(b+2)(a+1)+(b+2)(c+3)+(a+1)(c+3)〕=36-0 ...

...1\/(a+1)+1\/(b+2)+1\/(c+3)=0 求: (a+1)^2+(b+2)^2+(c+3)^2=?_百 ...
为方便解题设(a+1)=A (b+2)=B (c+3)=C 4式为BC+AC+AB=0 3式为 A^2+B^2+C^2 由1式平方得A^2+B^2+C^2+2AB+2BC+2AC=36 得出3式A^2+B^2+C^2=36 即(a+1)^2+(b+2)^2+(c+3)^2=36

. 如果a+b+c=0,1\/(a+1)+1\/(b+2)+1\/(c+3)=0,那么(a+1)^2+(
记x=a+1,y=b+2,z=c+3 得x+y+z=6 1\/x+1\/y+1\/z=0 即xy+yz+zx=0 所以所求为 x^2+y^2+z^2 =(x+y+z)^2-2(xy+yz+zx)=36

如果a+b+c=0,a+1分之1+b+2分之1+c+3分之1=0,那么(a+1)2+(b+2)2+(c...
∵A+B+C=0 ∴(A+B+C)^2=0 ∴-(A^2+B^2+C^2)=2(AB+BC+AC)∵1\/(A+1)+1\/(B+2)+1\/(C+3)=0 ∴[(B+2)*(C+3)+(A+1)*(C+3)+(A+1)*(B+2)]\/(A+1)(B+2)(C+3)=0 ∵(A+1)(B+2)(C+3)≠0 ∴(B+2)*(C+3)+(A+1)*(C+3)+(A+1)*(B+2)...

已知a+b+c=1 且 1\/(a+2)+1\/(b+3)+1\/(c+4)=0,求(a+2)^+(b+3)^+(c+4...
设x=a+2,y=b+3,z=c+4 则x+y+z=10 1\/x +1\/y +1\/z =0,即xy+yz+xz=0 所以x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=100 即(a+2)^2+(b+3)^2+(c+4)^2=100

若正数a,b,c满足a+b+c=1,求1\/(3a+2) +1\/(3b+2)+1\/(3c+2)的最小值
所以,a、b、c>0时,由琴生不等式得 f(a)+f(b)+f(c)>=3f[(a+b+c)\/3]--->1\/(3a+2)+1\/(3b+2)+1\/(3c+2)>=3×1\/[3(a+b+c)\/3+2]=3×1\/[3×1\/3+2]=1 故1\/(3a+2)+1\/(3b+2)+1\/(3c+2)>=1 取等号得 1\/(3a+2)+1\/(3b+2)+1\/(3c+2)最小值为1。

已知a+b+c=-3且1\/(a+1)+
a+b+c=0.(1式)1\/(a+1)+1\/(b+2)+1\/(c+3)=0.(2式)(a+1)^2+(b+2)^2+(c+3)^2.(3式)有1式得(a+1)+(b+2)+(c+3)=6 由2式通分得(b+2)*(c+3)+(a+1)*(c+3)+(a+1)*(b+2)=0.(4式)为方便解题设(a+1)=A (b+2)=B (c+3)=C 4式为...

...证明(1)a2+b2+c2>=1\/3(2)1\/(a+b)+1\/(b+c)+1\/(a?
所以a^2+b^2+c^2>=1\/3 2.左右都乘以2,得2\/(a+b)+2\/(b+c)+2\/(a+c)≥9,2用(a+b)+(b+c)+(a+c)代替即可得证 3.用柯西不等式 [√(4a+1)+√(ab+1)+√(4c+1)]^2≤(1+1+1)(4a+4b+4c+3)=21 4.楼主应该知道a+b+c>=3*(abc)^(1\/3)这个不等式吧 也...

若实数a,b,c同时满足a+b+c=0与a方+b方+c方=1,试求a,b,c的最小值与最...
所以 f(解:a+b+c=0 a²+b²+c²=1 (a+b)²=c²(a+b)²-(a²+b²)=c²-(1-c²)=2c²-1=2ab a+b=-c ab=c²-1\/2 ∴ab是方程 x²+cx+(c²-1\/2)=0的两个根 ∴ △=c²-4(c²-...

已知A+B+C=0,求证a(1\/b+1\/c)+B(1\/a+1\/c)+c(1\/a+\/b)+3=0
a(1\/b+1\/c)=a(c+b)\/bc b(1\/a+1\/c)=b(a+c)\/ac c(1\/a+1\/b)=c(a+b)\/ab 三式相加 原式=a^2(c+b)+b^2(a+c)+c^2(a+b)\/abc 而因为a+b+c=0,(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac 所以a=(-b-c) b=(-a-c) c=(-a-b) 所以原式=-(b+c)^2...

相似回答
大家正在搜